Cargando…
circRNA-miRNA association for coronary heart disease
Coronary heart disease (CHD) is a major cause of morbidity and mortality and an important public health problem globally, but the mechanism of CHD is still complex and unclear. The purpose of the current study was to explore the mechanism underlying CHD using high-throughput technology. The study pa...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6423602/ https://www.ncbi.nlm.nih.gov/pubmed/30720076 http://dx.doi.org/10.3892/mmr.2019.9905 |
Sumario: | Coronary heart disease (CHD) is a major cause of morbidity and mortality and an important public health problem globally, but the mechanism of CHD is still complex and unclear. The purpose of the current study was to explore the mechanism underlying CHD using high-throughput technology. The study participants were patients with coronary angiography (CAG)-proven severity of coronary artery stenosis. Patients were divided into control and test group based on specific inclusion criteria, and data were collected regarding the results of routine inspection and the Gensini score (GS). We explored the mechanism underlying CHD with high-throughput integration of circular RNA (circRNA)-microRNA (miRNA) data. Through the expression of circRNA-miRNA, we discovered a total of 110 circRNAs to be differentially expressed in the two groups. Of these, 73 were upregulated and 37 downregulated in the CHD (fold ≥2.0 and P<0.05). Among 18 miRNAs, 13 were upregulated and 5 were downregulated in the CHD group (fold ≥2.0 and P<0.05). Enrichment analysis showed that circRNAs participate in a variety of disease development processes, biological processes, molecular functions, cellular components, and pathways (P<0.05). The mechanism underlying CHD may be closely related to up- or downregulated circRNA and miRNA and co-expression of circRNA-miRNA specifically involved regulate multiple pathways and multiple cellular and molecular biological processes. |
---|