Cargando…

Dexmedetomidine Attenuates Lung Injury by Promoting Mitochondrial Fission and Oxygen Consumption

BACKGROUND: Sepsis is among the major antecedents of lung injury characterized by mitochondrial dysfunction. The functional integrity of the cell is influenced by mitochondrial dynamics. The present investigation evaluated the protective effects of dexmedetomidine against lung injury and speculates...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Jian-Rong, Lin, Qun, Liang, Fu-Qiu, Xie, Tian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: International Scientific Literature, Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6423731/
https://www.ncbi.nlm.nih.gov/pubmed/30856162
http://dx.doi.org/10.12659/MSM.913239
_version_ 1783404574016536576
author Zhang, Jian-Rong
Lin, Qun
Liang, Fu-Qiu
Xie, Tian
author_facet Zhang, Jian-Rong
Lin, Qun
Liang, Fu-Qiu
Xie, Tian
author_sort Zhang, Jian-Rong
collection PubMed
description BACKGROUND: Sepsis is among the major antecedents of lung injury characterized by mitochondrial dysfunction. The functional integrity of the cell is influenced by mitochondrial dynamics. The present investigation evaluated the protective effects of dexmedetomidine against lung injury and speculates on the possible mechanism underlying its effects on mitochondrial function. MATERIAL/METHODS: Lung injury was induced by cecal ligation and puncture (CLP) in mice treated with 0.1, 0.3, or 0.5 mg/kg intravenous dexmedetomidine after a 30-minute surgery. The effects of dexmedetomidine were determined by the oxygenation index and the wet/dry weight ratio of the lung. The expression of mitochondrial protein was assessed by western blot analyses and real-time polymerase chain reaction, to determine the effects of dexmedetomidine on mitochondrial dynamics. The histopathology of the lung tissue was determined by hematoxylin and eosin staining, and TUNEL-positive cells were counted in TUNEL assays. Activity of caspase-3, caspase-8, and caspase-9 enzymes were determined by colorimetric assay. RESULTS: Treatment with dexmedetomidine significantly attenuated changes in the oxygenation index and the wet/dry weight ratio in mice with CLP-induced lung injury. There was a significant decrease in pro-inflammatory mediators and markers of oxidative stress in the lung tissue of the dexmedetomidine-treated group compared to the negative control group. Moreover, treatment with dexmedetomidine attenuated the altered gene expression caused by mitochondrial fusion and fission in the lung tissue of mice with CLP-induced lung injury. The number of TUNEL-positive cells was significantly reduced in the dexmedetomidine-treated group compared to the negative control group. Moreover, dexmedetomidine ameliorated the altered activity of caspase-3, caspase-8, and caspase-9 enzyme in the lung tissues of CLP-induced lung injure mice. CONCLUSIONS: Dexmedetomidine protected mice against CLP-induced lung injury by attenuating changes in mitochondrial fusion and fission.
format Online
Article
Text
id pubmed-6423731
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher International Scientific Literature, Inc.
record_format MEDLINE/PubMed
spelling pubmed-64237312019-04-17 Dexmedetomidine Attenuates Lung Injury by Promoting Mitochondrial Fission and Oxygen Consumption Zhang, Jian-Rong Lin, Qun Liang, Fu-Qiu Xie, Tian Med Sci Monit Animal Study BACKGROUND: Sepsis is among the major antecedents of lung injury characterized by mitochondrial dysfunction. The functional integrity of the cell is influenced by mitochondrial dynamics. The present investigation evaluated the protective effects of dexmedetomidine against lung injury and speculates on the possible mechanism underlying its effects on mitochondrial function. MATERIAL/METHODS: Lung injury was induced by cecal ligation and puncture (CLP) in mice treated with 0.1, 0.3, or 0.5 mg/kg intravenous dexmedetomidine after a 30-minute surgery. The effects of dexmedetomidine were determined by the oxygenation index and the wet/dry weight ratio of the lung. The expression of mitochondrial protein was assessed by western blot analyses and real-time polymerase chain reaction, to determine the effects of dexmedetomidine on mitochondrial dynamics. The histopathology of the lung tissue was determined by hematoxylin and eosin staining, and TUNEL-positive cells were counted in TUNEL assays. Activity of caspase-3, caspase-8, and caspase-9 enzymes were determined by colorimetric assay. RESULTS: Treatment with dexmedetomidine significantly attenuated changes in the oxygenation index and the wet/dry weight ratio in mice with CLP-induced lung injury. There was a significant decrease in pro-inflammatory mediators and markers of oxidative stress in the lung tissue of the dexmedetomidine-treated group compared to the negative control group. Moreover, treatment with dexmedetomidine attenuated the altered gene expression caused by mitochondrial fusion and fission in the lung tissue of mice with CLP-induced lung injury. The number of TUNEL-positive cells was significantly reduced in the dexmedetomidine-treated group compared to the negative control group. Moreover, dexmedetomidine ameliorated the altered activity of caspase-3, caspase-8, and caspase-9 enzyme in the lung tissues of CLP-induced lung injure mice. CONCLUSIONS: Dexmedetomidine protected mice against CLP-induced lung injury by attenuating changes in mitochondrial fusion and fission. International Scientific Literature, Inc. 2019-03-11 /pmc/articles/PMC6423731/ /pubmed/30856162 http://dx.doi.org/10.12659/MSM.913239 Text en © Med Sci Monit, 2019 This work is licensed under Creative Common Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0 (https://creativecommons.org/licenses/by-nc-nd/4.0/) )
spellingShingle Animal Study
Zhang, Jian-Rong
Lin, Qun
Liang, Fu-Qiu
Xie, Tian
Dexmedetomidine Attenuates Lung Injury by Promoting Mitochondrial Fission and Oxygen Consumption
title Dexmedetomidine Attenuates Lung Injury by Promoting Mitochondrial Fission and Oxygen Consumption
title_full Dexmedetomidine Attenuates Lung Injury by Promoting Mitochondrial Fission and Oxygen Consumption
title_fullStr Dexmedetomidine Attenuates Lung Injury by Promoting Mitochondrial Fission and Oxygen Consumption
title_full_unstemmed Dexmedetomidine Attenuates Lung Injury by Promoting Mitochondrial Fission and Oxygen Consumption
title_short Dexmedetomidine Attenuates Lung Injury by Promoting Mitochondrial Fission and Oxygen Consumption
title_sort dexmedetomidine attenuates lung injury by promoting mitochondrial fission and oxygen consumption
topic Animal Study
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6423731/
https://www.ncbi.nlm.nih.gov/pubmed/30856162
http://dx.doi.org/10.12659/MSM.913239
work_keys_str_mv AT zhangjianrong dexmedetomidineattenuateslunginjurybypromotingmitochondrialfissionandoxygenconsumption
AT linqun dexmedetomidineattenuateslunginjurybypromotingmitochondrialfissionandoxygenconsumption
AT liangfuqiu dexmedetomidineattenuateslunginjurybypromotingmitochondrialfissionandoxygenconsumption
AT xietian dexmedetomidineattenuateslunginjurybypromotingmitochondrialfissionandoxygenconsumption