Cargando…
Non-linear regression models for time to flowering in wild chickpea combine genetic and climatic factors
BACKGROUND: Accurate prediction of crop flowering time is required for reaching maximal farm efficiency. Several models developed to accomplish this goal are based on deep knowledge of plant phenology, requiring large investment for every individual crop or new variety. Mathematical modeling can be...
Autores principales: | Kozlov, Konstantin, Singh, Anupam, Berger, Jens, Bishop-von Wettberg, Eric, Kahraman, Abdullah, Aydogan, Abdulkadir, Cook, Douglas, Nuzhdin, Sergey, Samsonova, Maria |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6423741/ https://www.ncbi.nlm.nih.gov/pubmed/30890147 http://dx.doi.org/10.1186/s12870-019-1685-2 |
Ejemplares similares
-
Dynamical climatic model for time to flowering in Vigna radiata
por: Kozlov, Konstantin, et al.
Publicado: (2020) -
Dynamical Modeling of the Core Gene Network Controlling Flowering Suggests Cumulative Activation From the FLOWERING LOCUS T Gene Homologs in Chickpea
por: Gursky, Vitaly V., et al.
Publicado: (2018) -
Transcriptomic Analysis of Flowering Time Genes in Cultivated Chickpea and Wild Cicer
por: Gretsova, Maria, et al.
Publicado: (2023) -
Modeling of Flowering Time in Vigna radiata with Artificial Image Objects, Convolutional Neural Network and Random Forest
por: Bavykina, Maria, et al.
Publicado: (2022) -
Historical Routes for Diversification of Domesticated Chickpea Inferred from Landrace Genomics
por: Igolkina, Anna A, et al.
Publicado: (2023)