Cargando…

Detection of the steroid receptor interacting protein, PAK6, in a neuronal cell line

PAK6 is a Group II p21 activated kinase that unlike traditional signal transduction proteins interacts with multiple binding partners including sex-steroid receptors. PAK6 acts as a nodal checkpoint integrating multiple cellular inputs to promote distinct cellular outcomes, some of which are associa...

Descripción completa

Detalles Bibliográficos
Autores principales: Goyette, Sharon Ramos, Schott, Eric, Uwimana, Astopheline, Nelson, David W., Boganski, Jacob
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6423815/
https://www.ncbi.nlm.nih.gov/pubmed/30923762
http://dx.doi.org/10.1016/j.heliyon.2019.e01294
Descripción
Sumario:PAK6 is a Group II p21 activated kinase that unlike traditional signal transduction proteins interacts with multiple binding partners including sex-steroid receptors. PAK6 acts as a nodal checkpoint integrating multiple cellular inputs to promote distinct cellular outcomes, some of which are associated with cytoskeletal remodeling. Despite the possibility that PAK6 may couple sex-specific neuronal function and therefore serve as a valuable research, diagnostic and therapeutic target, there is currently no standardized protocol for assessing PAK6 activity in a neuronal cell line. Here, we present a protocol for assessing PAK6 levels in a commonly used neuronal cell line, PC-12. In comparison with other methodology, this approach (1) does not require ex-planted tissue to identify PAK6 in neurons and (2) unlike other protocols which require steroid depleted media for detection of PAK6 in non-neuronal cell lines, such as prostate cancer cell lines, we were easily able to detect PAK6 in PC-12 cells grown in complete, steroid-containing media. Thus the present protocol allows for the efficient detection of native PAK6 in PC-12 cells to expedite targeted basic research of the emerging importance of PAK6 function in the brain as well as to accelerate the identification and isolation of potential therapeutic targets not only in cancerous but brain disease states as well.