Cargando…
Identifying and exploiting gene-pathway interactions from RNA-seq data for binary phenotype
BACKGROUND: RNA sequencing (RNA-seq) technology has identified multiple differentially expressed (DE) genes associated to complex disease, however, these genes only explain a modest part of variance. Omnigenic model assumes that disease may be driven by genes with indirect relevance to disease and b...
Autores principales: | Shao, Fang, Wang, Yaqi, Zhao, Yang, Yang, Sheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6423879/ https://www.ncbi.nlm.nih.gov/pubmed/30890140 http://dx.doi.org/10.1186/s12863-019-0739-7 |
Ejemplares similares
-
On Differential Gene Expression Using RNA-Seq Data
por: Lee, Juhee, et al.
Publicado: (2011) -
SNiPloid: A Utility to Exploit High-Throughput SNP Data Derived from RNA-Seq in Allopolyploid Species
por: Peralta, Marine, et al.
Publicado: (2013) -
Integrating pathway knowledge with deep neural networks to reduce the dimensionality in single-cell RNA-seq data
por: Gundogdu, Pelin, et al.
Publicado: (2022) -
Variance component testing for identifying differentially expressed genes in RNA-seq data
por: Yang, Sheng, et al.
Publicado: (2017) -
Estimation of data-specific constitutive exons with RNA-Seq data
por: Patrick, Ellis, et al.
Publicado: (2013)