Cargando…
Predictability of phases and magnitudes of natural decadal climate variability phenomena in CMIP5 experiments with the UKMO HadCM3, GFDL-CM2.1, NCAR-CCSM4, and MIROC5 global earth system models
Data from decadal hindcast experiments conducted under CMIP5 were used to assess the ability of CM2.1, HadCM3, MIROC5, and CCSM4 Earth System Models (ESMs) to hindcast sea-surface temperature (SST) indices of the Pacific Decadal Oscillation (PDO), the tropical Atlantic SST gradient (TAG) variability...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6424150/ https://www.ncbi.nlm.nih.gov/pubmed/30956408 http://dx.doi.org/10.1007/s00382-018-4321-1 |
Sumario: | Data from decadal hindcast experiments conducted under CMIP5 were used to assess the ability of CM2.1, HadCM3, MIROC5, and CCSM4 Earth System Models (ESMs) to hindcast sea-surface temperature (SST) indices of the Pacific Decadal Oscillation (PDO), the tropical Atlantic SST gradient (TAG) variability, and the West Pacific Warm Pool (WPWP) SST variability from 1961 to 2010. The ESMs were initialized at specific times with observed data to make 10- and 30-year hindcasts/forecasts. Deterministic and probabilistic skill estimates show predictability of detrended WPWP index to 5 years’ lead time and of non-detrended WPWP index to 10 years’ lead time. These estimates also show atypical skill dependence of PDO and TAG indices on lead times, with increasing skill in the middle to end of 10-year hindcasts. The skill of ESMs to hindcast an observed DCV index (signal skill) is surprisingly greater than the skill to hindcast their own DCV index (noise skill) at some lead times. All ESMs hindcast occurrence frequencies of positive and negative phases of the indices, and probabilities of same-phase transitions from one year to the next reasonably well. Four, major, low-latitude volcanic eruptions are associated with phase transitions of all observed and some of the ensemble-average hindcast indices. All ESMs’ WPWP index hindcasts respond correctly to all eruptions as do three observed PDO phase transitions. No one of the ESMs’ hindcasts of the TAG index responds correctly to these eruptions. Some of the ESMs hindcast correct phase transitions in the absence of eruptions also, implying that initializations with observed data are beneficial in predicting phase transitions. The skills of DCV indices’ phase prediction up to at least two years in advance can be used to inform societal impacts adaptation decisions in water resources management and agriculture. The Atlantic region’s responses in these ESMs appear to be fundamentally incorrect. |
---|