Cargando…

External validation of postnatal gestational age estimation using newborn metabolic profiles in Matlab, Bangladesh

This study sought to evaluate the performance of metabolic gestational age estimation models developed in Ontario, Canada in infants born in Bangladesh. Cord and heel prick blood spots were collected in Bangladesh and analyzed at a newborn screening facility in Ottawa, Canada. Algorithm-derived esti...

Descripción completa

Detalles Bibliográficos
Autores principales: Murphy, Malia SQ, Hawken, Steven, Cheng, Wei, Wilson, Lindsay A, Lamoureux, Monica, Henderson, Matthew, Pervin, Jesmin, Chowdhury, Azad, Gravett, Courtney, Lackritz, Eve, Potter, Beth K, Walker, Mark, Little, Julian, Rahman, Anisur, Chakraborty, Pranesh, Wilson, Kumanan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: eLife Sciences Publications, Ltd 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6424558/
https://www.ncbi.nlm.nih.gov/pubmed/30887951
http://dx.doi.org/10.7554/eLife.42627
_version_ 1783404699355971584
author Murphy, Malia SQ
Hawken, Steven
Cheng, Wei
Wilson, Lindsay A
Lamoureux, Monica
Henderson, Matthew
Pervin, Jesmin
Chowdhury, Azad
Gravett, Courtney
Lackritz, Eve
Potter, Beth K
Walker, Mark
Little, Julian
Rahman, Anisur
Chakraborty, Pranesh
Wilson, Kumanan
author_facet Murphy, Malia SQ
Hawken, Steven
Cheng, Wei
Wilson, Lindsay A
Lamoureux, Monica
Henderson, Matthew
Pervin, Jesmin
Chowdhury, Azad
Gravett, Courtney
Lackritz, Eve
Potter, Beth K
Walker, Mark
Little, Julian
Rahman, Anisur
Chakraborty, Pranesh
Wilson, Kumanan
author_sort Murphy, Malia SQ
collection PubMed
description This study sought to evaluate the performance of metabolic gestational age estimation models developed in Ontario, Canada in infants born in Bangladesh. Cord and heel prick blood spots were collected in Bangladesh and analyzed at a newborn screening facility in Ottawa, Canada. Algorithm-derived estimates of gestational age and preterm birth were compared to ultrasound-validated estimates. 1036 cord blood and 487 heel prick samples were collected from 1069 unique newborns. The majority of samples (93.2% of heel prick and 89.9% of cord blood) were collected from term infants. When applied to heel prick data, algorithms correctly estimated gestational age to within an average deviation of 1 week overall (root mean square error = 1.07 weeks). Metabolic gestational age estimation provides accurate population-level estimates of gestational age in this data set. Models were effective on data obtained from both heel prick and cord blood, the latter being a more feasible option in low-resource settings.
format Online
Article
Text
id pubmed-6424558
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher eLife Sciences Publications, Ltd
record_format MEDLINE/PubMed
spelling pubmed-64245582019-03-20 External validation of postnatal gestational age estimation using newborn metabolic profiles in Matlab, Bangladesh Murphy, Malia SQ Hawken, Steven Cheng, Wei Wilson, Lindsay A Lamoureux, Monica Henderson, Matthew Pervin, Jesmin Chowdhury, Azad Gravett, Courtney Lackritz, Eve Potter, Beth K Walker, Mark Little, Julian Rahman, Anisur Chakraborty, Pranesh Wilson, Kumanan eLife Epidemiology and Global Health This study sought to evaluate the performance of metabolic gestational age estimation models developed in Ontario, Canada in infants born in Bangladesh. Cord and heel prick blood spots were collected in Bangladesh and analyzed at a newborn screening facility in Ottawa, Canada. Algorithm-derived estimates of gestational age and preterm birth were compared to ultrasound-validated estimates. 1036 cord blood and 487 heel prick samples were collected from 1069 unique newborns. The majority of samples (93.2% of heel prick and 89.9% of cord blood) were collected from term infants. When applied to heel prick data, algorithms correctly estimated gestational age to within an average deviation of 1 week overall (root mean square error = 1.07 weeks). Metabolic gestational age estimation provides accurate population-level estimates of gestational age in this data set. Models were effective on data obtained from both heel prick and cord blood, the latter being a more feasible option in low-resource settings. eLife Sciences Publications, Ltd 2019-03-19 /pmc/articles/PMC6424558/ /pubmed/30887951 http://dx.doi.org/10.7554/eLife.42627 Text en © 2019, Murphy et al http://creativecommons.org/licenses/by/4.0/ http://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited.
spellingShingle Epidemiology and Global Health
Murphy, Malia SQ
Hawken, Steven
Cheng, Wei
Wilson, Lindsay A
Lamoureux, Monica
Henderson, Matthew
Pervin, Jesmin
Chowdhury, Azad
Gravett, Courtney
Lackritz, Eve
Potter, Beth K
Walker, Mark
Little, Julian
Rahman, Anisur
Chakraborty, Pranesh
Wilson, Kumanan
External validation of postnatal gestational age estimation using newborn metabolic profiles in Matlab, Bangladesh
title External validation of postnatal gestational age estimation using newborn metabolic profiles in Matlab, Bangladesh
title_full External validation of postnatal gestational age estimation using newborn metabolic profiles in Matlab, Bangladesh
title_fullStr External validation of postnatal gestational age estimation using newborn metabolic profiles in Matlab, Bangladesh
title_full_unstemmed External validation of postnatal gestational age estimation using newborn metabolic profiles in Matlab, Bangladesh
title_short External validation of postnatal gestational age estimation using newborn metabolic profiles in Matlab, Bangladesh
title_sort external validation of postnatal gestational age estimation using newborn metabolic profiles in matlab, bangladesh
topic Epidemiology and Global Health
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6424558/
https://www.ncbi.nlm.nih.gov/pubmed/30887951
http://dx.doi.org/10.7554/eLife.42627
work_keys_str_mv AT murphymaliasq externalvalidationofpostnatalgestationalageestimationusingnewbornmetabolicprofilesinmatlabbangladesh
AT hawkensteven externalvalidationofpostnatalgestationalageestimationusingnewbornmetabolicprofilesinmatlabbangladesh
AT chengwei externalvalidationofpostnatalgestationalageestimationusingnewbornmetabolicprofilesinmatlabbangladesh
AT wilsonlindsaya externalvalidationofpostnatalgestationalageestimationusingnewbornmetabolicprofilesinmatlabbangladesh
AT lamoureuxmonica externalvalidationofpostnatalgestationalageestimationusingnewbornmetabolicprofilesinmatlabbangladesh
AT hendersonmatthew externalvalidationofpostnatalgestationalageestimationusingnewbornmetabolicprofilesinmatlabbangladesh
AT pervinjesmin externalvalidationofpostnatalgestationalageestimationusingnewbornmetabolicprofilesinmatlabbangladesh
AT chowdhuryazad externalvalidationofpostnatalgestationalageestimationusingnewbornmetabolicprofilesinmatlabbangladesh
AT gravettcourtney externalvalidationofpostnatalgestationalageestimationusingnewbornmetabolicprofilesinmatlabbangladesh
AT lackritzeve externalvalidationofpostnatalgestationalageestimationusingnewbornmetabolicprofilesinmatlabbangladesh
AT potterbethk externalvalidationofpostnatalgestationalageestimationusingnewbornmetabolicprofilesinmatlabbangladesh
AT walkermark externalvalidationofpostnatalgestationalageestimationusingnewbornmetabolicprofilesinmatlabbangladesh
AT littlejulian externalvalidationofpostnatalgestationalageestimationusingnewbornmetabolicprofilesinmatlabbangladesh
AT rahmananisur externalvalidationofpostnatalgestationalageestimationusingnewbornmetabolicprofilesinmatlabbangladesh
AT chakrabortypranesh externalvalidationofpostnatalgestationalageestimationusingnewbornmetabolicprofilesinmatlabbangladesh
AT wilsonkumanan externalvalidationofpostnatalgestationalageestimationusingnewbornmetabolicprofilesinmatlabbangladesh