Cargando…
External validation of postnatal gestational age estimation using newborn metabolic profiles in Matlab, Bangladesh
This study sought to evaluate the performance of metabolic gestational age estimation models developed in Ontario, Canada in infants born in Bangladesh. Cord and heel prick blood spots were collected in Bangladesh and analyzed at a newborn screening facility in Ottawa, Canada. Algorithm-derived esti...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6424558/ https://www.ncbi.nlm.nih.gov/pubmed/30887951 http://dx.doi.org/10.7554/eLife.42627 |
_version_ | 1783404699355971584 |
---|---|
author | Murphy, Malia SQ Hawken, Steven Cheng, Wei Wilson, Lindsay A Lamoureux, Monica Henderson, Matthew Pervin, Jesmin Chowdhury, Azad Gravett, Courtney Lackritz, Eve Potter, Beth K Walker, Mark Little, Julian Rahman, Anisur Chakraborty, Pranesh Wilson, Kumanan |
author_facet | Murphy, Malia SQ Hawken, Steven Cheng, Wei Wilson, Lindsay A Lamoureux, Monica Henderson, Matthew Pervin, Jesmin Chowdhury, Azad Gravett, Courtney Lackritz, Eve Potter, Beth K Walker, Mark Little, Julian Rahman, Anisur Chakraborty, Pranesh Wilson, Kumanan |
author_sort | Murphy, Malia SQ |
collection | PubMed |
description | This study sought to evaluate the performance of metabolic gestational age estimation models developed in Ontario, Canada in infants born in Bangladesh. Cord and heel prick blood spots were collected in Bangladesh and analyzed at a newborn screening facility in Ottawa, Canada. Algorithm-derived estimates of gestational age and preterm birth were compared to ultrasound-validated estimates. 1036 cord blood and 487 heel prick samples were collected from 1069 unique newborns. The majority of samples (93.2% of heel prick and 89.9% of cord blood) were collected from term infants. When applied to heel prick data, algorithms correctly estimated gestational age to within an average deviation of 1 week overall (root mean square error = 1.07 weeks). Metabolic gestational age estimation provides accurate population-level estimates of gestational age in this data set. Models were effective on data obtained from both heel prick and cord blood, the latter being a more feasible option in low-resource settings. |
format | Online Article Text |
id | pubmed-6424558 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | eLife Sciences Publications, Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-64245582019-03-20 External validation of postnatal gestational age estimation using newborn metabolic profiles in Matlab, Bangladesh Murphy, Malia SQ Hawken, Steven Cheng, Wei Wilson, Lindsay A Lamoureux, Monica Henderson, Matthew Pervin, Jesmin Chowdhury, Azad Gravett, Courtney Lackritz, Eve Potter, Beth K Walker, Mark Little, Julian Rahman, Anisur Chakraborty, Pranesh Wilson, Kumanan eLife Epidemiology and Global Health This study sought to evaluate the performance of metabolic gestational age estimation models developed in Ontario, Canada in infants born in Bangladesh. Cord and heel prick blood spots were collected in Bangladesh and analyzed at a newborn screening facility in Ottawa, Canada. Algorithm-derived estimates of gestational age and preterm birth were compared to ultrasound-validated estimates. 1036 cord blood and 487 heel prick samples were collected from 1069 unique newborns. The majority of samples (93.2% of heel prick and 89.9% of cord blood) were collected from term infants. When applied to heel prick data, algorithms correctly estimated gestational age to within an average deviation of 1 week overall (root mean square error = 1.07 weeks). Metabolic gestational age estimation provides accurate population-level estimates of gestational age in this data set. Models were effective on data obtained from both heel prick and cord blood, the latter being a more feasible option in low-resource settings. eLife Sciences Publications, Ltd 2019-03-19 /pmc/articles/PMC6424558/ /pubmed/30887951 http://dx.doi.org/10.7554/eLife.42627 Text en © 2019, Murphy et al http://creativecommons.org/licenses/by/4.0/ http://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited. |
spellingShingle | Epidemiology and Global Health Murphy, Malia SQ Hawken, Steven Cheng, Wei Wilson, Lindsay A Lamoureux, Monica Henderson, Matthew Pervin, Jesmin Chowdhury, Azad Gravett, Courtney Lackritz, Eve Potter, Beth K Walker, Mark Little, Julian Rahman, Anisur Chakraborty, Pranesh Wilson, Kumanan External validation of postnatal gestational age estimation using newborn metabolic profiles in Matlab, Bangladesh |
title | External validation of postnatal gestational age estimation using newborn metabolic profiles in Matlab, Bangladesh |
title_full | External validation of postnatal gestational age estimation using newborn metabolic profiles in Matlab, Bangladesh |
title_fullStr | External validation of postnatal gestational age estimation using newborn metabolic profiles in Matlab, Bangladesh |
title_full_unstemmed | External validation of postnatal gestational age estimation using newborn metabolic profiles in Matlab, Bangladesh |
title_short | External validation of postnatal gestational age estimation using newborn metabolic profiles in Matlab, Bangladesh |
title_sort | external validation of postnatal gestational age estimation using newborn metabolic profiles in matlab, bangladesh |
topic | Epidemiology and Global Health |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6424558/ https://www.ncbi.nlm.nih.gov/pubmed/30887951 http://dx.doi.org/10.7554/eLife.42627 |
work_keys_str_mv | AT murphymaliasq externalvalidationofpostnatalgestationalageestimationusingnewbornmetabolicprofilesinmatlabbangladesh AT hawkensteven externalvalidationofpostnatalgestationalageestimationusingnewbornmetabolicprofilesinmatlabbangladesh AT chengwei externalvalidationofpostnatalgestationalageestimationusingnewbornmetabolicprofilesinmatlabbangladesh AT wilsonlindsaya externalvalidationofpostnatalgestationalageestimationusingnewbornmetabolicprofilesinmatlabbangladesh AT lamoureuxmonica externalvalidationofpostnatalgestationalageestimationusingnewbornmetabolicprofilesinmatlabbangladesh AT hendersonmatthew externalvalidationofpostnatalgestationalageestimationusingnewbornmetabolicprofilesinmatlabbangladesh AT pervinjesmin externalvalidationofpostnatalgestationalageestimationusingnewbornmetabolicprofilesinmatlabbangladesh AT chowdhuryazad externalvalidationofpostnatalgestationalageestimationusingnewbornmetabolicprofilesinmatlabbangladesh AT gravettcourtney externalvalidationofpostnatalgestationalageestimationusingnewbornmetabolicprofilesinmatlabbangladesh AT lackritzeve externalvalidationofpostnatalgestationalageestimationusingnewbornmetabolicprofilesinmatlabbangladesh AT potterbethk externalvalidationofpostnatalgestationalageestimationusingnewbornmetabolicprofilesinmatlabbangladesh AT walkermark externalvalidationofpostnatalgestationalageestimationusingnewbornmetabolicprofilesinmatlabbangladesh AT littlejulian externalvalidationofpostnatalgestationalageestimationusingnewbornmetabolicprofilesinmatlabbangladesh AT rahmananisur externalvalidationofpostnatalgestationalageestimationusingnewbornmetabolicprofilesinmatlabbangladesh AT chakrabortypranesh externalvalidationofpostnatalgestationalageestimationusingnewbornmetabolicprofilesinmatlabbangladesh AT wilsonkumanan externalvalidationofpostnatalgestationalageestimationusingnewbornmetabolicprofilesinmatlabbangladesh |