Cargando…
Short-acquisition-time JPRESS and its application to paediatric brain tumours
OBJECTIVE: To develop and assess a short-duration JPRESS protocol for detection of overlapping metabolite biomarkers and its application to paediatric brain tumours at 3 Tesla. MATERIALS AND METHODS: The short-duration protocol (6 min) was optimised and compared for spectral quality to a high-resolu...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6424926/ https://www.ncbi.nlm.nih.gov/pubmed/30460431 http://dx.doi.org/10.1007/s10334-018-0716-6 |
Sumario: | OBJECTIVE: To develop and assess a short-duration JPRESS protocol for detection of overlapping metabolite biomarkers and its application to paediatric brain tumours at 3 Tesla. MATERIALS AND METHODS: The short-duration protocol (6 min) was optimised and compared for spectral quality to a high-resolution (38 min) JPRESS protocol in a phantom and five healthy volunteers. The 6-min JPRESS was acquired from four paediatric brain tumours and compared with short-TE PRESS. RESULTS: Metabolite identification between the 6- and 38-min protocols was comparable in phantom and volunteer data. For metabolites with Cramer–Rao lower bounds > 50%, interpretation of JPRESS increased confidence in assignment of lactate, myo-Inositol and scyllo-Inositol. JPRESS also showed promise for the detection of glycine and taurine in paediatric brain tumours when compared to short-TE MRS. CONCLUSION: A 6-min JPRESS protocol is well tolerated in paediatric brain tumour patients. Visual inspection of a 6-min JPRESS spectrum enables identification of a range of metabolite biomarkers of clinical interest. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1007/s10334-018-0716-6) contains supplementary material, which is available to authorized users. |
---|