Cargando…
Re-localization of hormone effectors is associated with dormancy alleviation by temperature and after-ripening in sunflower seeds
Temperature is the primary factor that affects seed dormancy and germination. However, the molecular mechanism that underlies its effect on dormancy alleviation remained largely unknown. In this study, we investigate hormone involvement in temperature induced germination as compared to that caused b...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6424972/ https://www.ncbi.nlm.nih.gov/pubmed/30890715 http://dx.doi.org/10.1038/s41598-019-40494-w |
Sumario: | Temperature is the primary factor that affects seed dormancy and germination. However, the molecular mechanism that underlies its effect on dormancy alleviation remained largely unknown. In this study, we investigate hormone involvement in temperature induced germination as compared to that caused by after-ripening. Dormant (D) sunflower seeds cannot germinate at 10 °C but fully germinate at 20 °C. After-ripened seeds become non-dormant (ND), i.e. able to germinate at 10 °C. Pharmacological experiments showed the importance of abscisic acid (ABA), gibberellins (GAs) and ethylene in temperature- and after-ripening-induced germination of sunflower seeds. Hormone quantification showed that after-ripening is mediated by a decline in both ABA content and sensitivity while ABA content is increased in D seeds treated at 10 or 20 °C, suggesting that ABA decrease is not a prerequisite for temperature induced dormancy alleviation. GAs and ethylene contents were in accordance with germination potential of the three conditions (GA(1) was higher in D 20 °C and ND 10 °C than in D 10 °C). Transcripts analysis showed that the major change concerns ABA and GAs metabolism genes, while ABA signalling gene expression was significantly unchanged. Moreover, another level of hormonal regulation at the subcellular localization has been revealed by immunocytolocalization study. Indeed, ABA, protein Abscisic acid-Insensitive 5 (ABI5), involved in ABA-regulated gene expression and DELLA protein RGL2, a repressor of the gibberellins signalling pathway, localized mainly in the nucleus in non-germinating seeds while they localized in the cytosol in germinating seeds. Furthermore, ACC-oxidase (ACO) protein, the key ethylene biosynthesis enzyme, was detected in the meristem only in germinating seeds. Our results reveal the importance of hormone actors trafficking in the cell and their regulation in specialized tissue such as the meristem in dormancy alleviation and germination. |
---|