Cargando…
A new formulation of graphene oxide/fluconazole compound as a promising agent against Candida albicans
Candida albicans (C. albicans) belongs to the opportunistic fungal pathogens, which cause a wide spectrum of infections in immune-compromised patients. Graphene oxide (GO), a biocompatibility agent, has been reported to exhibit effective antimicrobial activity. In the present study, a graphene oxide...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6424987/ https://www.ncbi.nlm.nih.gov/pubmed/30859396 http://dx.doi.org/10.1007/s40204-019-0109-6 |
Sumario: | Candida albicans (C. albicans) belongs to the opportunistic fungal pathogens, which cause a wide spectrum of infections in immune-compromised patients. Graphene oxide (GO), a biocompatibility agent, has been reported to exhibit effective antimicrobial activity. In the present study, a graphene oxide/fluconazole (GO/Flu) compound was synthesized and characterized using Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy. The antifungal activity of GO/Flu was examined against fluconazole-resistant C. albicans (ATCC 10231) compared to GO and Flu using the broth microdilution method, according to CLSI protocol. DNA fragmentation was assessed through the antifungal mechanism of GO/Flu. The release of Fluin PBS medium was measured. Moreover, the cytotoxicity effect of GO/Flu on SW480 cell line was evaluated. Indeed, adhesion ability of C. albicans-treated GO/Flu against SW480 cell line was assessed. The minimum inhibitory concentration (MIC) of GO, Flu, and GO/Flu was determined at 800 µg/mL, 16 µg/mL, and 400–9 µg/mL, respectively. Notably, GO/Flu exhibited an intense antifungal activity compared to GO and Flu. In addition, GO/Flu showed much less cell toxicity against SW480 cell line than GO and Flu (P < 0.05). The release determination of Flu in PBS (pH 7.4) medium was 72.42%. GO/Flu reduced the adhesion ability of C. albicans to SW480 cell line significantly. DNA fragmentation assay indicated that GO/Flu potentially degraded the DNA of C. albicans and caused a fungicidal influence. According to the findings, GO/Flu could enhance the antifungal activity against C.albicans through DNA fragmentation with low cytotoxicity effect. |
---|