Cargando…
Extensive conservation of the proneuropeptide and peptide prohormone complement in mollusks
As one of the most diverse groups of invertebrate animals, mollusks represent powerful models for neurobiological and developmental studies. Neuropeptides and peptide hormones are a heterogeneous class of signalling molecules involved in chemical communication between neurons and in neuroendocrine r...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6425005/ https://www.ncbi.nlm.nih.gov/pubmed/30890731 http://dx.doi.org/10.1038/s41598-019-40949-0 |
Sumario: | As one of the most diverse groups of invertebrate animals, mollusks represent powerful models for neurobiological and developmental studies. Neuropeptides and peptide hormones are a heterogeneous class of signalling molecules involved in chemical communication between neurons and in neuroendocrine regulation. Here we present a fine-grained view of the molluscan neuropeptide and peptide hormone toolkit. Our results expand the distribution of several peptide families (e.g., prokineticin, insulin-related peptides, prohormone-4, LFRFamide) within Lophotrochozoa and provide evidence for an early origin of others (e.g., GNXQN/prohormone-2, neuroparsin). We identified a new peptide family broadly distributed among conchiferan mollusks, the PXRX family. We found the Wnt antagonist dickkopf1/2/4 ortholog in lophotrochozoans and nematodes and reveal that the egg-laying hormone family is a DH44 homolog restricted to gastropods. Our data demonstrate that numerous peptides evolved much earlier than previously assumed and that key signalling elements are extensively conserved among extant mollusks. |
---|