Cargando…
Integrated transcriptome and in vitro analysis revealed anti-proliferative effect of citral in human stomach cancer through apoptosis
Cancer is the second leading cause of death globally, particularly stomach cancer is third most common causes of cancer death worldwide. Citral possesses anti-tumor activity in various cancer cell lines, However its effect toward stomach cancer and its mechanism of action is have yet to be elucidate...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6425008/ https://www.ncbi.nlm.nih.gov/pubmed/30890753 http://dx.doi.org/10.1038/s41598-019-41406-8 |
Sumario: | Cancer is the second leading cause of death globally, particularly stomach cancer is third most common causes of cancer death worldwide. Citral possesses anti-tumor activity in various cancer cell lines, However its effect toward stomach cancer and its mechanism of action is have yet to be elucidated. The goal of the present study is to elucidate the role of citral in stomach cancer using transcriptome and in vitro approaches. We performed transcriptome analysis using RNA-seq and explored its capability to persuade apoptosis in AGS human stomach cancer cell lines in vitro. Furthermore, the enrichment and KEGG pathway results suggested that there are several genes involved to induce apoptosis pathway. Furthermore, our study also demonstrated that citral arrested colony formation and migration of cancer cells significantly than that of untreated cells. RNA-seq revealed a total of 125 million trimmed reads obtained from both control and citral treated groups respectively. A total number of 612 differentially expressed genes (DEGs) were identified which includes 216 genes up-regulated and 396 genes down-regulated genes after treatment. The enrichment analysis identified DEGs genes from transcriptome libraries including cell death, cell cycle, apoptosis and cell growth. The present study showed the significant inhibition effect upon citral by regulating various genes involved in signaling pathways, inhibits metastasis, colony formation and induced apoptosis both in silico and in vitro. |
---|