Cargando…
Automatic and efficient MRI-US segmentations for improving intraoperative image fusion in image-guided neurosurgery
Knowledge of the exact tumor location and structures at risk in its vicinity are crucial for neurosurgical interventions. Neuronavigation systems support navigation within the patient's brain, based on preoperative MRI (preMRI). However, increasing tissue deformation during the course of tumor...
Autores principales: | Nitsch, J., Klein, J., Dammann, P., Wrede, K., Gembruch, O., Moltz, J.H., Meine, H., Sure, U., Kikinis, R., Miller, D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6425116/ https://www.ncbi.nlm.nih.gov/pubmed/30901714 http://dx.doi.org/10.1016/j.nicl.2019.101766 |
Ejemplares similares
-
Segmentation-based registration of ultrasound volumes for glioma resection in image-guided neurosurgery
por: Canalini, Luca, et al.
Publicado: (2019) -
Automatic Tissue Differentiation Based on Confocal Endomicroscopic Images for Intraoperative Guidance in Neurosurgery
por: Kamen, Ali, et al.
Publicado: (2016) -
Intraoperative thermal infrared imaging in neurosurgery: machine learning approaches for advanced segmentation of tumors
por: Cardone, Daniela, et al.
Publicado: (2023) -
MRI-based radiomic feature analysis of end-stage liver disease for severity stratification
por: Nitsch, Jennifer, et al.
Publicado: (2021) -
Automatic liver tumor segmentation in CT with fully convolutional neural networks and object-based postprocessing
por: Chlebus, Grzegorz, et al.
Publicado: (2018)