Cargando…

Assessing biological aging following systemic administration of bFGF-supplemented adipose-derived stem cells with high efficacy in an experimental rat model

Biological aging (BA) is a tool for comprehensive assessment of individual health status. A rat model was developed for measuring BA by intravenously administering adipose-derived stem cells (ADSCs) into rats and evaluating several biochemical parameters. In addition, the effect of basic fibroblast...

Descripción completa

Detalles Bibliográficos
Autores principales: Bae, Hahn-Sol, Son, Hye-Youn, Son, Youngsook, Kim, Sundong, Hong, Hyun-Sook, Park, Ji-Ung
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6425125/
https://www.ncbi.nlm.nih.gov/pubmed/30906427
http://dx.doi.org/10.3892/etm.2019.7251
Descripción
Sumario:Biological aging (BA) is a tool for comprehensive assessment of individual health status. A rat model was developed for measuring BA by intravenously administering adipose-derived stem cells (ADSCs) into rats and evaluating several biochemical parameters. In addition, the effect of basic fibroblast growth factor (bFGF) on the differentiation potential of ADSCs was analyzed. A total of 12 male Sprague Dawley rats were divided into autologous ADSC administration (n=6) and saline administration (n=6) groups. The ADSC administration group was further divided into the bFGF supplemented (n=3) and bFGF non-supplemented (n=3) groups. Biochemical parameters and antioxidant potential were evaluated prior to fat harvest and ADSC administration, as well as 1, 3, and 5 weeks following ADSC administration. ADSC administration regulated inflammation, renal and hepatic functions, and levels of antioxidant enzymes. The cell doubling time of the bFGF-supplemented group was shorter (P=0.0001) than that of the bFGF non-supplemented group. Renal and hepatic functions were maintained with bFGF supplementation, which possibly enhanced the effect of ADSCs. The rat model developed in the present study may promote better understanding of BA in the context of bFGF-supplemented ADSC administration.