Cargando…
Deep Learning Network for Multiuser Detection in Satellite Mobile Communication System
A multiuser detection (MUD) algorithm based on deep learning network is proposed for the satellite mobile communication system. Due to relative motion between the satellite and users, multiple access interference (MUI) introduced by multipath fading channel reduces system performance. The proposed M...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6425414/ https://www.ncbi.nlm.nih.gov/pubmed/30949201 http://dx.doi.org/10.1155/2019/8613639 |
_version_ | 1783404839406927872 |
---|---|
author | Qing yang, Guan Shuang, Wu Ya-Ru, He |
author_facet | Qing yang, Guan Shuang, Wu Ya-Ru, He |
author_sort | Qing yang, Guan |
collection | PubMed |
description | A multiuser detection (MUD) algorithm based on deep learning network is proposed for the satellite mobile communication system. Due to relative motion between the satellite and users, multiple access interference (MUI) introduced by multipath fading channel reduces system performance. The proposed MUD algorithm based on deep learning network firstly establishes the CINR optimal loss function according to the multiuser access mode and then obtains the best multiuser detection weight through the steepest gradient iteration. Multilayer nonlinear learning obtains interference cancellation sharing weights to achieve maximum signal-to-noise ratio through gradient iteration, which is superior than the traditional serial interference cancellation algorithm and parallel interference cancellation algorithm. Then, the weights with multiuser detection through multilayer network forward learning iteration are obtained with traditional multiuser detecting quality characteristics. The proposed multiuser access detection based on deep learning network algorithm improves the MUD accuracy and reduces the number of traditional multiusers. The performance of the satellite multifading uplink system shows that the proposed deep learning network can provide high precision and better iteration times. |
format | Online Article Text |
id | pubmed-6425414 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-64254142019-04-04 Deep Learning Network for Multiuser Detection in Satellite Mobile Communication System Qing yang, Guan Shuang, Wu Ya-Ru, He Comput Intell Neurosci Research Article A multiuser detection (MUD) algorithm based on deep learning network is proposed for the satellite mobile communication system. Due to relative motion between the satellite and users, multiple access interference (MUI) introduced by multipath fading channel reduces system performance. The proposed MUD algorithm based on deep learning network firstly establishes the CINR optimal loss function according to the multiuser access mode and then obtains the best multiuser detection weight through the steepest gradient iteration. Multilayer nonlinear learning obtains interference cancellation sharing weights to achieve maximum signal-to-noise ratio through gradient iteration, which is superior than the traditional serial interference cancellation algorithm and parallel interference cancellation algorithm. Then, the weights with multiuser detection through multilayer network forward learning iteration are obtained with traditional multiuser detecting quality characteristics. The proposed multiuser access detection based on deep learning network algorithm improves the MUD accuracy and reduces the number of traditional multiusers. The performance of the satellite multifading uplink system shows that the proposed deep learning network can provide high precision and better iteration times. Hindawi 2019-03-04 /pmc/articles/PMC6425414/ /pubmed/30949201 http://dx.doi.org/10.1155/2019/8613639 Text en Copyright © 2019 Guan Qing yang et al. http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Qing yang, Guan Shuang, Wu Ya-Ru, He Deep Learning Network for Multiuser Detection in Satellite Mobile Communication System |
title | Deep Learning Network for Multiuser Detection in Satellite Mobile Communication System |
title_full | Deep Learning Network for Multiuser Detection in Satellite Mobile Communication System |
title_fullStr | Deep Learning Network for Multiuser Detection in Satellite Mobile Communication System |
title_full_unstemmed | Deep Learning Network for Multiuser Detection in Satellite Mobile Communication System |
title_short | Deep Learning Network for Multiuser Detection in Satellite Mobile Communication System |
title_sort | deep learning network for multiuser detection in satellite mobile communication system |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6425414/ https://www.ncbi.nlm.nih.gov/pubmed/30949201 http://dx.doi.org/10.1155/2019/8613639 |
work_keys_str_mv | AT qingyangguan deeplearningnetworkformultiuserdetectioninsatellitemobilecommunicationsystem AT shuangwu deeplearningnetworkformultiuserdetectioninsatellitemobilecommunicationsystem AT yaruhe deeplearningnetworkformultiuserdetectioninsatellitemobilecommunicationsystem |