Cargando…
Applying Supervised Machine Learning to Identify Which Patient Characteristics Identify the Highest Rates of Mortality Post-Interhospital Transfer
OBJECTIVE: To demonstrate the usefulness of applying supervised machine-learning analyses to identify specific groups of patients that experience high levels of mortality post-interhospital transfer. METHODS: This was a cross-sectional analysis of data from the Health Care Utilization Project 2013 N...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6425528/ https://www.ncbi.nlm.nih.gov/pubmed/30911219 http://dx.doi.org/10.1177/1178222619835548 |
_version_ | 1783404855861182464 |
---|---|
author | Reimer, Andrew P Schiltz, Nicholas K Ho, Vanessa P Madigan, Elizabeth A Koroukian, Siran M |
author_facet | Reimer, Andrew P Schiltz, Nicholas K Ho, Vanessa P Madigan, Elizabeth A Koroukian, Siran M |
author_sort | Reimer, Andrew P |
collection | PubMed |
description | OBJECTIVE: To demonstrate the usefulness of applying supervised machine-learning analyses to identify specific groups of patients that experience high levels of mortality post-interhospital transfer. METHODS: This was a cross-sectional analysis of data from the Health Care Utilization Project 2013 National Inpatient Sample, that applied supervised machine-learning approaches that included (1) classification and regression tree to identify mutually exclusive groups of patients and their associated characteristics of those experiencing the highest levels of mortality and (2) random forest to identify the relative importance of each characteristic’s contribution to post-transfer mortality. RESULTS: A total of 21 independent groups of patients were identified, with 13 of those groups exhibiting at least double the national average rate of mortality post-transfer. Patient characteristics identified as influencing post-transfer mortality the most included: diagnosis of a circulatory disorder, comorbidity of coagulopathy, diagnosis of cancer, and age. CONCLUSIONS: Employing supervised machine-learning analyses enabled the computational feasibility to assess all potential combinations of available patient characteristics to identify groups of patients experiencing the highest rates of mortality post-interhospital transfer, providing potentially useful data to support developing clinical decision support systems in future work. |
format | Online Article Text |
id | pubmed-6425528 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | SAGE Publications |
record_format | MEDLINE/PubMed |
spelling | pubmed-64255282019-03-25 Applying Supervised Machine Learning to Identify Which Patient Characteristics Identify the Highest Rates of Mortality Post-Interhospital Transfer Reimer, Andrew P Schiltz, Nicholas K Ho, Vanessa P Madigan, Elizabeth A Koroukian, Siran M Biomed Inform Insights Original Research OBJECTIVE: To demonstrate the usefulness of applying supervised machine-learning analyses to identify specific groups of patients that experience high levels of mortality post-interhospital transfer. METHODS: This was a cross-sectional analysis of data from the Health Care Utilization Project 2013 National Inpatient Sample, that applied supervised machine-learning approaches that included (1) classification and regression tree to identify mutually exclusive groups of patients and their associated characteristics of those experiencing the highest levels of mortality and (2) random forest to identify the relative importance of each characteristic’s contribution to post-transfer mortality. RESULTS: A total of 21 independent groups of patients were identified, with 13 of those groups exhibiting at least double the national average rate of mortality post-transfer. Patient characteristics identified as influencing post-transfer mortality the most included: diagnosis of a circulatory disorder, comorbidity of coagulopathy, diagnosis of cancer, and age. CONCLUSIONS: Employing supervised machine-learning analyses enabled the computational feasibility to assess all potential combinations of available patient characteristics to identify groups of patients experiencing the highest rates of mortality post-interhospital transfer, providing potentially useful data to support developing clinical decision support systems in future work. SAGE Publications 2019-03-18 /pmc/articles/PMC6425528/ /pubmed/30911219 http://dx.doi.org/10.1177/1178222619835548 Text en © The Author(s) 2019 http://www.creativecommons.org/licenses/by-nc/4.0/ This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (http://www.creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage). |
spellingShingle | Original Research Reimer, Andrew P Schiltz, Nicholas K Ho, Vanessa P Madigan, Elizabeth A Koroukian, Siran M Applying Supervised Machine Learning to Identify Which Patient Characteristics Identify the Highest Rates of Mortality Post-Interhospital Transfer |
title | Applying Supervised Machine Learning to Identify Which Patient Characteristics Identify the Highest Rates of Mortality Post-Interhospital Transfer |
title_full | Applying Supervised Machine Learning to Identify Which Patient Characteristics Identify the Highest Rates of Mortality Post-Interhospital Transfer |
title_fullStr | Applying Supervised Machine Learning to Identify Which Patient Characteristics Identify the Highest Rates of Mortality Post-Interhospital Transfer |
title_full_unstemmed | Applying Supervised Machine Learning to Identify Which Patient Characteristics Identify the Highest Rates of Mortality Post-Interhospital Transfer |
title_short | Applying Supervised Machine Learning to Identify Which Patient Characteristics Identify the Highest Rates of Mortality Post-Interhospital Transfer |
title_sort | applying supervised machine learning to identify which patient characteristics identify the highest rates of mortality post-interhospital transfer |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6425528/ https://www.ncbi.nlm.nih.gov/pubmed/30911219 http://dx.doi.org/10.1177/1178222619835548 |
work_keys_str_mv | AT reimerandrewp applyingsupervisedmachinelearningtoidentifywhichpatientcharacteristicsidentifythehighestratesofmortalitypostinterhospitaltransfer AT schiltznicholask applyingsupervisedmachinelearningtoidentifywhichpatientcharacteristicsidentifythehighestratesofmortalitypostinterhospitaltransfer AT hovanessap applyingsupervisedmachinelearningtoidentifywhichpatientcharacteristicsidentifythehighestratesofmortalitypostinterhospitaltransfer AT madiganelizabetha applyingsupervisedmachinelearningtoidentifywhichpatientcharacteristicsidentifythehighestratesofmortalitypostinterhospitaltransfer AT koroukiansiranm applyingsupervisedmachinelearningtoidentifywhichpatientcharacteristicsidentifythehighestratesofmortalitypostinterhospitaltransfer |