Cargando…
CNNs for automatic glaucoma assessment using fundus images: an extensive validation
BACKGROUND: Most current algorithms for automatic glaucoma assessment using fundus images rely on handcrafted features based on segmentation, which are affected by the performance of the chosen segmentation method and the extracted features. Among other characteristics, convolutional neural networks...
Autores principales: | Diaz-Pinto, Andres, Morales, Sandra, Naranjo, Valery, Köhler, Thomas, Mossi, Jose M., Navea, Amparo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6425593/ https://www.ncbi.nlm.nih.gov/pubmed/30894178 http://dx.doi.org/10.1186/s12938-019-0649-y |
Ejemplares similares
-
Automatic Glaucoma Detection Method Applying a Statistical Approach to Fundus Images
por: Septiarini, Anindita, et al.
Publicado: (2018) -
Utilizing 2D-region-based CNNs for automatic dendritic spine detection in 3D live cell imaging
por: Vogel, Fabian W., et al.
Publicado: (2023) -
Data on OCT and fundus images for the detection of glaucoma
por: Raja, Hina, et al.
Publicado: (2020) -
Regional Image Features Model for Automatic Classification between Normal and Glaucoma in Fundus and Scanning Laser Ophthalmoscopy (SLO) Images
por: Haleem, Muhammad Salman, et al.
Publicado: (2016) -
Automatic Classification of Simulated Breast Tomosynthesis Whole Images for the Presence of Microcalcification Clusters Using Deep CNNs
por: Mota, Ana M., et al.
Publicado: (2022)