Cargando…
A review on wearable photoplethysmography sensors and their potential future applications in health care
Photoplethysmography (PPG) is an uncomplicated and inexpensive optical measurement method that is often used for heart rate monitoring purposes. PPG is a non-invasive technology that uses a light source and a photodetector at the surface of skin to measure the volumetric variations of blood circulat...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6426305/ https://www.ncbi.nlm.nih.gov/pubmed/30906922 http://dx.doi.org/10.15406/ijbsbe.2018.04.00125 |
Sumario: | Photoplethysmography (PPG) is an uncomplicated and inexpensive optical measurement method that is often used for heart rate monitoring purposes. PPG is a non-invasive technology that uses a light source and a photodetector at the surface of skin to measure the volumetric variations of blood circulation. Recently, there has been much interest from numerous researchers around the globe to extract further valuable information from the PPG signal in addition to heart rate estimation and pulse oxymetry readings. PPG signal’s second derivative wave contains important health-related information. Thus, analysis of this waveform can help researchers and clinicians to evaluate various cardiovascular-related diseases such as atherosclerosis and arterial stiffness. Moreover, investigating the second derivative wave of PPG signal can also assist in early detection and diagnosis of various cardiovascular illnesses that may possibly appear later in life. For early recognition and analysis of such illnesses, continuous and real-time monitoring is an important approach that has been enabled by the latest technological advances in sensor technology and wireless communications. The aim of this article is to briefly consider some of the current developments and challenges of wearable PPG-based monitoring technologies and then to discuss some of the potential applications of this technology in clinical settings. |
---|