Cargando…

Dual complementary liposomes inhibit triple-negative breast tumor progression and metastasis

Distinguishing malignant cells from non-neoplastic ones is a major challenge in triple-negative breast cancer (TNBC) treatment. Here, we developed a complementary targeting strategy that uses precisely matched, multivalent ligand-receptor interactions to recognize and target TNBC tumors at the prima...

Descripción completa

Detalles Bibliográficos
Autores principales: Guo, Peng, Yang, Jiang, Liu, Daxing, Huang, Lan, Fell, Gillian, Huang, Jing, Moses, Marsha A., Auguste, Debra T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6426465/
https://www.ncbi.nlm.nih.gov/pubmed/30906868
http://dx.doi.org/10.1126/sciadv.aav5010
Descripción
Sumario:Distinguishing malignant cells from non-neoplastic ones is a major challenge in triple-negative breast cancer (TNBC) treatment. Here, we developed a complementary targeting strategy that uses precisely matched, multivalent ligand-receptor interactions to recognize and target TNBC tumors at the primary site and metastatic lesions. We screened a panel of cancer cell surface markers and identified intercellular adhesion molecule–1 (ICAM1) and epithelial growth factor receptor (EGFR) as optimal candidates for TNBC complementary targeting. We engineered a dual complementary liposome (DCL) that precisely complements the molecular ratio and organization of ICAM1 and EGFR specific to TNBC cell surfaces. Our in vitro mechanistic studies demonstrated that DCLs, compared to single-targeting liposomes, exhibited increased binding, enhanced internalization, and decreased receptor signaling. DCLs consistently exhibited substantially increased tumor targeting activity and antitumor efficacy in orthotopic and lung metastasis models, indicating that DCLs are a platform technology for the design of personalized nanomedicines for TNBC.