Cargando…
Development of antimicrobial gelatin films with boron derivatives
Food packaging technology has been advancing to provide safe and high quality food products and to minimize food waste. Moreover, there is a dire need to replace plastic materials in order to reduce environmental pollution. The aim of this study was to prepare biodegradable antimicrobial packaging f...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Scientific and Technological Research Council of Turkey
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6426643/ https://www.ncbi.nlm.nih.gov/pubmed/30930635 http://dx.doi.org/10.3906/biy-1807-181 |
Sumario: | Food packaging technology has been advancing to provide safe and high quality food products and to minimize food waste. Moreover, there is a dire need to replace plastic materials in order to reduce environmental pollution. The aim of this study was to prepare biodegradable antimicrobial packaging films from gelatin. Boric acid, disodium octaborate tetrahydrate, and sodium pentaborate were incorporated as the antimicrobial agents. Films containing boric acid and its salts showed antibacterial effect against Staphylococcus aureus and Pseudomonas aeruginosa, as well as antifungal and anticandidal effects against Aspergillus niger and Candida albicans. The mechanical strength of the films was mostly enhanced by the addition of boron derivatives. The rheological measurements and Fourier-transform infrared spectroscopy results suggest that boron derivatives did not interfere with the network formation during gelling. The morphology of boron-added antimicrobial films was found to be similar to the morphology of the control . In conclusion, the newly developed gelatin films containing 10% or 15% disodium octaborate (g/g gelatin) might be good candidates for biodegradable antimicrobial packaging materials. |
---|