Cargando…

Development of antimicrobial gelatin films with boron derivatives

Food packaging technology has been advancing to provide safe and high quality food products and to minimize food waste. Moreover, there is a dire need to replace plastic materials in order to reduce environmental pollution. The aim of this study was to prepare biodegradable antimicrobial packaging f...

Descripción completa

Detalles Bibliográficos
Autores principales: ARGIN, Sanem, GÜLERİM, Merve, ŞAHİN, Fikrettin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Scientific and Technological Research Council of Turkey 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6426643/
https://www.ncbi.nlm.nih.gov/pubmed/30930635
http://dx.doi.org/10.3906/biy-1807-181
Descripción
Sumario:Food packaging technology has been advancing to provide safe and high quality food products and to minimize food waste. Moreover, there is a dire need to replace plastic materials in order to reduce environmental pollution. The aim of this study was to prepare biodegradable antimicrobial packaging films from gelatin. Boric acid, disodium octaborate tetrahydrate, and sodium pentaborate were incorporated as the antimicrobial agents. Films containing boric acid and its salts showed antibacterial effect against Staphylococcus aureus and Pseudomonas aeruginosa, as well as antifungal and anticandidal effects against Aspergillus niger and Candida albicans. The mechanical strength of the films was mostly enhanced by the addition of boron derivatives. The rheological measurements and Fourier-transform infrared spectroscopy results suggest that boron derivatives did not interfere with the network formation during gelling. The morphology of boron-added antimicrobial films was found to be similar to the morphology of the control . In conclusion, the newly developed gelatin films containing 10% or 15% disodium octaborate (g/g gelatin) might be good candidates for biodegradable antimicrobial packaging materials.