Cargando…

Prediction and expression analysis of G protein-coupled receptors in the laboratory stick insect, Carausius morosus

G protein-coupled receptors (GPCRs) are 7-transmembrane proteins that transduce various extracellular signals into intracellular pathways. They are the major target of neuropeptides, which regulate the development, feeding behavior, mating behavior, circadian rhythm, and many other physiological fun...

Descripción completa

Detalles Bibliográficos
Autores principales: DUAN ŞAHBAZ, Burçin, BİRGÜL İYİSON, Necla
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Scientific and Technological Research Council of Turkey 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6426647/
https://www.ncbi.nlm.nih.gov/pubmed/30930638
http://dx.doi.org/10.3906/biy-1809-27
Descripción
Sumario:G protein-coupled receptors (GPCRs) are 7-transmembrane proteins that transduce various extracellular signals into intracellular pathways. They are the major target of neuropeptides, which regulate the development, feeding behavior, mating behavior, circadian rhythm, and many other physiological functions of insects. In the present study, we performed RNA sequencing and de novo transcriptome assembly to uncover the GPCRs expressed in the stick insect Carausius morosus. The transcript assemblies were predicted for the presence of 7-transmembrane GPCR domains. As a result, 430 putative GPCR transcripts were obtained and 43 of these revealed full-length sequences with highly significant similarity to known GPCR sequences in the databases. Thirteen different GPCRs were chosen for tissue expression analysis. Some of these receptors, such as calcitonin, inotocin, and tyramine receptors, showed specific expression in some of the tissues. Additionally, GPCR prediction yielded a novel uncharacterized GPCR sequence, which was specifically expressed in the central nervous system and ganglia. Previously, the only information about the anatomy of the stick insect was on its gastrointestinal system. This study provides complete anatomical information about the adult insect.