Cargando…

Influence of Anion and Cation Structure of Ionic Liquids on Carboxylic Acids Extraction

A recently proposed new mechanism and a model of reactive extraction of carboxylic acids by hydrophobic ionic liquids (ILs) was tested on five systems from published as well as from new equilibrium data on liquid-liquid extraction of butyric and lactic acids (BA and LA) from aqueous solutions. Two p...

Descripción completa

Detalles Bibliográficos
Autores principales: Marták, Ján, Schlosser, Štefan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6426792/
https://www.ncbi.nlm.nih.gov/pubmed/30923706
http://dx.doi.org/10.3389/fchem.2019.00117
_version_ 1783405073757372416
author Marták, Ján
Schlosser, Štefan
author_facet Marták, Ján
Schlosser, Štefan
author_sort Marták, Ján
collection PubMed
description A recently proposed new mechanism and a model of reactive extraction of carboxylic acids by hydrophobic ionic liquids (ILs) was tested on five systems from published as well as from new equilibrium data on liquid-liquid extraction of butyric and lactic acids (BA and LA) from aqueous solutions. Two phosphonium and one ammonium ILs were used. The model describes experimental data for all systems with a good fit. The mechanism of acid extraction by ILs is very similar for all tested systems. This indicates a more general validity of the developed model. The model allows deeper understanding of regularities in carboxylic acid extraction by hydrophobic ILs. Stability constants of the first acid-IL bonds are by one to three orders of magnitude higher compared to that of acid-acid bonds. Values of stability constants related to two acid-IL bonds are sensitive to a cation and anion structure while stability constants for acid-acid bonds more distant from polar head of IL are not sensitive to IL structure. The stability constants of acid-IL bonds for LA and phosphonium ILs are by more than one order of magnitude lower compared to those for BA and are not influenced with an anion structure. The value of stability constant for the first BA-IL bond is for phosphonium IL with a decanoate anion only one third of those for IL with a phosphinate anion. Differences in the stability of acid-IL bonds for BA and LA can be attributed to hydrophobic interactions which almost do not occur in LA extraction. Ammonium IL also forms a less stable BA-IL bond than the phosphonium IL with the same phosphinate anion. A less stable BA-IL bond can favor the higher recovery of volatile acid from the solvent by vacuum evaporation where free acid is separated instead of acid salts as in classical processes what is a great advantage.
format Online
Article
Text
id pubmed-6426792
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-64267922019-03-28 Influence of Anion and Cation Structure of Ionic Liquids on Carboxylic Acids Extraction Marták, Ján Schlosser, Štefan Front Chem Chemistry A recently proposed new mechanism and a model of reactive extraction of carboxylic acids by hydrophobic ionic liquids (ILs) was tested on five systems from published as well as from new equilibrium data on liquid-liquid extraction of butyric and lactic acids (BA and LA) from aqueous solutions. Two phosphonium and one ammonium ILs were used. The model describes experimental data for all systems with a good fit. The mechanism of acid extraction by ILs is very similar for all tested systems. This indicates a more general validity of the developed model. The model allows deeper understanding of regularities in carboxylic acid extraction by hydrophobic ILs. Stability constants of the first acid-IL bonds are by one to three orders of magnitude higher compared to that of acid-acid bonds. Values of stability constants related to two acid-IL bonds are sensitive to a cation and anion structure while stability constants for acid-acid bonds more distant from polar head of IL are not sensitive to IL structure. The stability constants of acid-IL bonds for LA and phosphonium ILs are by more than one order of magnitude lower compared to those for BA and are not influenced with an anion structure. The value of stability constant for the first BA-IL bond is for phosphonium IL with a decanoate anion only one third of those for IL with a phosphinate anion. Differences in the stability of acid-IL bonds for BA and LA can be attributed to hydrophobic interactions which almost do not occur in LA extraction. Ammonium IL also forms a less stable BA-IL bond than the phosphonium IL with the same phosphinate anion. A less stable BA-IL bond can favor the higher recovery of volatile acid from the solvent by vacuum evaporation where free acid is separated instead of acid salts as in classical processes what is a great advantage. Frontiers Media S.A. 2019-03-14 /pmc/articles/PMC6426792/ /pubmed/30923706 http://dx.doi.org/10.3389/fchem.2019.00117 Text en Copyright © 2019 Marták and Schlosser. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Chemistry
Marták, Ján
Schlosser, Štefan
Influence of Anion and Cation Structure of Ionic Liquids on Carboxylic Acids Extraction
title Influence of Anion and Cation Structure of Ionic Liquids on Carboxylic Acids Extraction
title_full Influence of Anion and Cation Structure of Ionic Liquids on Carboxylic Acids Extraction
title_fullStr Influence of Anion and Cation Structure of Ionic Liquids on Carboxylic Acids Extraction
title_full_unstemmed Influence of Anion and Cation Structure of Ionic Liquids on Carboxylic Acids Extraction
title_short Influence of Anion and Cation Structure of Ionic Liquids on Carboxylic Acids Extraction
title_sort influence of anion and cation structure of ionic liquids on carboxylic acids extraction
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6426792/
https://www.ncbi.nlm.nih.gov/pubmed/30923706
http://dx.doi.org/10.3389/fchem.2019.00117
work_keys_str_mv AT martakjan influenceofanionandcationstructureofionicliquidsoncarboxylicacidsextraction
AT schlosserstefan influenceofanionandcationstructureofionicliquidsoncarboxylicacidsextraction