Cargando…

Vitamin C deficiency causes muscle atrophy and a deterioration in physical performance

L-Ascorbic acid (AsA) is a water-soluble antioxidant. We examined the effect of AsA deficiency on skeletal muscle using senescence marker protein-30 (SMP30)-knockout (KO) mice that are defective in AsA biosynthesis, which makes this mouse model similar to humans, to clarify the function of AsA in sk...

Descripción completa

Detalles Bibliográficos
Autores principales: Takisawa, Shoko, Funakoshi, Tomoko, Yatsu, Tomofumi, Nagata, Kisaburo, Aigaki, Toshiro, Machida, Shuichi, Ishigami, Akihito
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6426981/
https://www.ncbi.nlm.nih.gov/pubmed/30894591
http://dx.doi.org/10.1038/s41598-019-41229-7
Descripción
Sumario:L-Ascorbic acid (AsA) is a water-soluble antioxidant. We examined the effect of AsA deficiency on skeletal muscle using senescence marker protein-30 (SMP30)-knockout (KO) mice that are defective in AsA biosynthesis, which makes this mouse model similar to humans, to clarify the function of AsA in skeletal muscle. Eight-week-old female SMP30-KO mice were divided into the following two groups: an AsA-sufficient group [AsA(+)] that was administered 1.5 g/L AsA and an AsA-deficient group [AsA(−)] that was administered tap (AsA-free) water. At 4 weeks, the AsA content in the gastrocnemius muscle of AsA(−) mice was 0.7% compared to that in the gastrocnemius muscle of AsA(+) mice. Significantly lower weights of all muscles were observed in AsA(−) mice than those in AsA(+) mice at 12 and 16 weeks. The cross-sectional area of the soleus was significantly smaller in AsA(−) mice at 16 weeks than that in AsA(+) mice. The physical performance of AsA(−) mice was significantly less than that of AsA(+) mice at 12 weeks. Following AsA deficiency for 12 weeks, the expression of ubiquitin ligases, such as atrogin1/muscle atrophy F-box (MAFbx) and muscle RING-finger protein 1 (MuRF1), was upregulated. Furthermore, all detected effects of AsA deficiency on muscles of the AsA(−) group at 12 weeks were restored following AsA supplementation for 12 weeks. Thus, longer-term AsA deficiency is associated with muscle wasting, that this can be reversed by restoring AsA levels.