Cargando…
Semantic Segmentation of Building Roof in Dense Urban Environment with Deep Convolutional Neural Network: A Case Study Using GF2 VHR Imagery in China
This paper presents a novel approach for semantic segmentation of building roofs in dense urban environments with a Deep Convolution Neural Network (DCNN) using Chinese Very High Resolution (VHR) satellite (i.e., GF2) imagery. To provide an operational end-to-end approach for accurately mapping buil...
Autores principales: | Qin, Yuchu, Wu, Yunchao, Li, Bin, Gao, Shuai, Liu, Miao, Zhan, Yulin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6427113/ https://www.ncbi.nlm.nih.gov/pubmed/30866539 http://dx.doi.org/10.3390/s19051164 |
Ejemplares similares
-
Transformer-Based Model with Dynamic Attention Pyramid Head for Semantic Segmentation of VHR Remote Sensing Imagery
por: Xu, Yufen, et al.
Publicado: (2022) -
Embedded Implementation of VHR Satellite Image Segmentation
por: Li, Chao, et al.
Publicado: (2016) -
Urban vegetation extraction from VHR (tri-)stereo imagery – a comparative study in two central European cities
por: Kothencz, Gyula, et al.
Publicado: (2018) -
Applying Fully Convolutional Architectures for Semantic Segmentation of a Single Tree Species in Urban Environment on High Resolution UAV Optical Imagery
por: Lobo Torres, Daliana, et al.
Publicado: (2020) -
High-Resolution Aerial Imagery Semantic Labeling with Dense Pyramid Network
por: Pan, Xuran, et al.
Publicado: (2018)