Cargando…
Estimating PM(2.5) Concentrations Based on MODIS AOD and NAQPMS Data over Beijing–Tianjin–Hebei
Accurately estimating fine ambient particulate matter (PM(2.5)) is important to assess air quality and to support epidemiological studies. To analyze the spatiotemporal variation of PM(2.5) concentrations, previous studies used different methodologies, such as statistical models or neural networks,...
Autores principales: | Wang, Qingxin, Zeng, Qiaolin, Tao, Jinhua, Sun, Lin, Zhang, Liang, Gu, Tianyu, Wang, Zifeng, Chen, Liangfu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6427133/ https://www.ncbi.nlm.nih.gov/pubmed/30857313 http://dx.doi.org/10.3390/s19051207 |
Ejemplares similares
-
Satellite-Based Estimation of Hourly PM(2.5) Concentrations Using a Vertical-Humidity Correction Method from Himawari-AOD in Hebei
por: Zeng, Qiaolin, et al.
Publicado: (2018) -
Synergy of AERONET and MODIS AOD products in the estimation of PM(2.5) concentrations in Beijing
por: Fu, Disong, et al.
Publicado: (2018) -
Estimation of ground-level PM(2.5) concentration using MODIS AOD and corrected regression model over Beijing, China
por: Xu, Xinghan, et al.
Publicado: (2020) -
The Effect of Socioeconomic Factors on Spatiotemporal Patterns of PM(2.5) Concentration in Beijing–Tianjin–Hebei Region and Surrounding Areas
por: Wang, Wenting, et al.
Publicado: (2020) -
Spatial–seasonal characteristics and critical impact factors of PM(2.5) concentration in the Beijing–Tianjin–Hebei urban agglomeration
por: Huang, Tianhang, et al.
Publicado: (2018)