Cargando…
Recent Advances in Electrosynthesized Molecularly Imprinted Polymer Sensing Platforms for Bioanalyte Detection
The accurate detection of biological materials has remained at the forefront of scientific research for decades. This includes the detection of molecules, proteins, and bacteria. Biomimetic sensors look to replicate the sensitive and selective mechanisms that are found in biological systems and inco...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6427210/ https://www.ncbi.nlm.nih.gov/pubmed/30857285 http://dx.doi.org/10.3390/s19051204 |
_version_ | 1783405159520403456 |
---|---|
author | Crapnell, Robert D. Hudson, Alexander Foster, Christopher W. Eersels, Kasper van Grinsven, Bart Cleij, Thomas J. Banks, Craig E. Peeters, Marloes |
author_facet | Crapnell, Robert D. Hudson, Alexander Foster, Christopher W. Eersels, Kasper van Grinsven, Bart Cleij, Thomas J. Banks, Craig E. Peeters, Marloes |
author_sort | Crapnell, Robert D. |
collection | PubMed |
description | The accurate detection of biological materials has remained at the forefront of scientific research for decades. This includes the detection of molecules, proteins, and bacteria. Biomimetic sensors look to replicate the sensitive and selective mechanisms that are found in biological systems and incorporate these properties into functional sensing platforms. Molecularly imprinted polymers (MIPs) are synthetic receptors that can form high affinity binding sites complementary to the specific analyte of interest. They utilise the shape, size, and functionality to produce sensitive and selective recognition of target analytes. One route of synthesizing MIPs is through electropolymerization, utilising predominantly constant potential methods or cyclic voltammetry. This methodology allows for the formation of a polymer directly onto the surface of a transducer. The thickness, morphology, and topography of the films can be manipulated specifically for each template. Recently, numerous reviews have been published in the production and sensing applications of MIPs; however, there are few reports on the use of electrosynthesized MIPs (eMIPs). The number of publications and citations utilising eMIPs is increasing each year, with a review produced on the topic in 2012. This review will primarily focus on advancements from 2012 in the use of eMIPs in sensing platforms for the detection of biologically relevant materials, including the development of increased polymer layer dimensions for whole bacteria detection and the use of mixed monomer compositions to increase selectivity toward analytes. |
format | Online Article Text |
id | pubmed-6427210 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-64272102019-04-15 Recent Advances in Electrosynthesized Molecularly Imprinted Polymer Sensing Platforms for Bioanalyte Detection Crapnell, Robert D. Hudson, Alexander Foster, Christopher W. Eersels, Kasper van Grinsven, Bart Cleij, Thomas J. Banks, Craig E. Peeters, Marloes Sensors (Basel) Review The accurate detection of biological materials has remained at the forefront of scientific research for decades. This includes the detection of molecules, proteins, and bacteria. Biomimetic sensors look to replicate the sensitive and selective mechanisms that are found in biological systems and incorporate these properties into functional sensing platforms. Molecularly imprinted polymers (MIPs) are synthetic receptors that can form high affinity binding sites complementary to the specific analyte of interest. They utilise the shape, size, and functionality to produce sensitive and selective recognition of target analytes. One route of synthesizing MIPs is through electropolymerization, utilising predominantly constant potential methods or cyclic voltammetry. This methodology allows for the formation of a polymer directly onto the surface of a transducer. The thickness, morphology, and topography of the films can be manipulated specifically for each template. Recently, numerous reviews have been published in the production and sensing applications of MIPs; however, there are few reports on the use of electrosynthesized MIPs (eMIPs). The number of publications and citations utilising eMIPs is increasing each year, with a review produced on the topic in 2012. This review will primarily focus on advancements from 2012 in the use of eMIPs in sensing platforms for the detection of biologically relevant materials, including the development of increased polymer layer dimensions for whole bacteria detection and the use of mixed monomer compositions to increase selectivity toward analytes. MDPI 2019-03-09 /pmc/articles/PMC6427210/ /pubmed/30857285 http://dx.doi.org/10.3390/s19051204 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Crapnell, Robert D. Hudson, Alexander Foster, Christopher W. Eersels, Kasper van Grinsven, Bart Cleij, Thomas J. Banks, Craig E. Peeters, Marloes Recent Advances in Electrosynthesized Molecularly Imprinted Polymer Sensing Platforms for Bioanalyte Detection |
title | Recent Advances in Electrosynthesized Molecularly Imprinted Polymer Sensing Platforms for Bioanalyte Detection |
title_full | Recent Advances in Electrosynthesized Molecularly Imprinted Polymer Sensing Platforms for Bioanalyte Detection |
title_fullStr | Recent Advances in Electrosynthesized Molecularly Imprinted Polymer Sensing Platforms for Bioanalyte Detection |
title_full_unstemmed | Recent Advances in Electrosynthesized Molecularly Imprinted Polymer Sensing Platforms for Bioanalyte Detection |
title_short | Recent Advances in Electrosynthesized Molecularly Imprinted Polymer Sensing Platforms for Bioanalyte Detection |
title_sort | recent advances in electrosynthesized molecularly imprinted polymer sensing platforms for bioanalyte detection |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6427210/ https://www.ncbi.nlm.nih.gov/pubmed/30857285 http://dx.doi.org/10.3390/s19051204 |
work_keys_str_mv | AT crapnellrobertd recentadvancesinelectrosynthesizedmolecularlyimprintedpolymersensingplatformsforbioanalytedetection AT hudsonalexander recentadvancesinelectrosynthesizedmolecularlyimprintedpolymersensingplatformsforbioanalytedetection AT fosterchristopherw recentadvancesinelectrosynthesizedmolecularlyimprintedpolymersensingplatformsforbioanalytedetection AT eerselskasper recentadvancesinelectrosynthesizedmolecularlyimprintedpolymersensingplatformsforbioanalytedetection AT vangrinsvenbart recentadvancesinelectrosynthesizedmolecularlyimprintedpolymersensingplatformsforbioanalytedetection AT cleijthomasj recentadvancesinelectrosynthesizedmolecularlyimprintedpolymersensingplatformsforbioanalytedetection AT bankscraige recentadvancesinelectrosynthesizedmolecularlyimprintedpolymersensingplatformsforbioanalytedetection AT peetersmarloes recentadvancesinelectrosynthesizedmolecularlyimprintedpolymersensingplatformsforbioanalytedetection |