Cargando…
Efficient Distributed Method for NLOS Cooperative Localization in WSNs
The accuracy of cooperative localization can be severely degraded in non-line-of-sight (NLOS) environments. Although most existing approaches modify models to alleviate NLOS impact, computational speed does not satisfy practical applications. In this paper, we propose a distributed cooperative local...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6427213/ https://www.ncbi.nlm.nih.gov/pubmed/30866560 http://dx.doi.org/10.3390/s19051173 |
Sumario: | The accuracy of cooperative localization can be severely degraded in non-line-of-sight (NLOS) environments. Although most existing approaches modify models to alleviate NLOS impact, computational speed does not satisfy practical applications. In this paper, we propose a distributed cooperative localization method for wireless sensor networks (WSNs) in NLOS environments. The convex model in the proposed method is based on projection relaxation. This model was designed for situations where prior information on NLOS connections is unavailable. We developed an efficient decomposed formulation for the convex counterpart, and designed a parallel distributed algorithm based on the alternating direction method of multipliers (ADMM), which significantly improves computational speed. To accelerate the convergence rate of local updates, we approached the subproblems via the proximal algorithm and analyzed its computational complexity. Numerical simulation results demonstrate that our approach is superior in processing speed and accuracy to other methods in NLOS scenarios. |
---|