Cargando…
A Successive Approximation Time-to-Digital Converter with Single Set of Delay Lines for Time Interval Measurements
The paper is focused on design of time-to-digital converters based on successive approximation (SA-TDCs—Successive Approximation TDCs) using binary-scaled delay lines in the feedforward architecture. The aim of the paper is to provide a tutorial on successive approximation TDCs (SA-TDCs) on the one...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6427283/ https://www.ncbi.nlm.nih.gov/pubmed/30841543 http://dx.doi.org/10.3390/s19051109 |
_version_ | 1783405173936226304 |
---|---|
author | Szyduczyński, Jakub Kościelnik, Dariusz Miśkowicz, Marek |
author_facet | Szyduczyński, Jakub Kościelnik, Dariusz Miśkowicz, Marek |
author_sort | Szyduczyński, Jakub |
collection | PubMed |
description | The paper is focused on design of time-to-digital converters based on successive approximation (SA-TDCs—Successive Approximation TDCs) using binary-scaled delay lines in the feedforward architecture. The aim of the paper is to provide a tutorial on successive approximation TDCs (SA-TDCs) on the one hand, and to make the contribution to optimization of SA-TDC design on the other. The proposed design optimization consists essentially in reduction of circuit complexity and die area, as well as in improving converter performance. The main paper contribution is the concept of reducing SA-TDC complexity by removing one of two sets of delay lines in the feedforward architecture at the price of simple output decoding. For 12 bits of resolution, the complexity reduction is close to 50%. Furthermore, the paper presents the implementation of 8-bit SA-TDC in 180 nm CMOS technology with a quantization step 25 ps obtained by asymmetrical design of pair of inverters and symmetrized multiplexer control. |
format | Online Article Text |
id | pubmed-6427283 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-64272832019-04-15 A Successive Approximation Time-to-Digital Converter with Single Set of Delay Lines for Time Interval Measurements Szyduczyński, Jakub Kościelnik, Dariusz Miśkowicz, Marek Sensors (Basel) Article The paper is focused on design of time-to-digital converters based on successive approximation (SA-TDCs—Successive Approximation TDCs) using binary-scaled delay lines in the feedforward architecture. The aim of the paper is to provide a tutorial on successive approximation TDCs (SA-TDCs) on the one hand, and to make the contribution to optimization of SA-TDC design on the other. The proposed design optimization consists essentially in reduction of circuit complexity and die area, as well as in improving converter performance. The main paper contribution is the concept of reducing SA-TDC complexity by removing one of two sets of delay lines in the feedforward architecture at the price of simple output decoding. For 12 bits of resolution, the complexity reduction is close to 50%. Furthermore, the paper presents the implementation of 8-bit SA-TDC in 180 nm CMOS technology with a quantization step 25 ps obtained by asymmetrical design of pair of inverters and symmetrized multiplexer control. MDPI 2019-03-05 /pmc/articles/PMC6427283/ /pubmed/30841543 http://dx.doi.org/10.3390/s19051109 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Szyduczyński, Jakub Kościelnik, Dariusz Miśkowicz, Marek A Successive Approximation Time-to-Digital Converter with Single Set of Delay Lines for Time Interval Measurements |
title | A Successive Approximation Time-to-Digital Converter with Single Set of Delay Lines for Time Interval Measurements |
title_full | A Successive Approximation Time-to-Digital Converter with Single Set of Delay Lines for Time Interval Measurements |
title_fullStr | A Successive Approximation Time-to-Digital Converter with Single Set of Delay Lines for Time Interval Measurements |
title_full_unstemmed | A Successive Approximation Time-to-Digital Converter with Single Set of Delay Lines for Time Interval Measurements |
title_short | A Successive Approximation Time-to-Digital Converter with Single Set of Delay Lines for Time Interval Measurements |
title_sort | successive approximation time-to-digital converter with single set of delay lines for time interval measurements |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6427283/ https://www.ncbi.nlm.nih.gov/pubmed/30841543 http://dx.doi.org/10.3390/s19051109 |
work_keys_str_mv | AT szyduczynskijakub asuccessiveapproximationtimetodigitalconverterwithsinglesetofdelaylinesfortimeintervalmeasurements AT koscielnikdariusz asuccessiveapproximationtimetodigitalconverterwithsinglesetofdelaylinesfortimeintervalmeasurements AT miskowiczmarek asuccessiveapproximationtimetodigitalconverterwithsinglesetofdelaylinesfortimeintervalmeasurements AT szyduczynskijakub successiveapproximationtimetodigitalconverterwithsinglesetofdelaylinesfortimeintervalmeasurements AT koscielnikdariusz successiveapproximationtimetodigitalconverterwithsinglesetofdelaylinesfortimeintervalmeasurements AT miskowiczmarek successiveapproximationtimetodigitalconverterwithsinglesetofdelaylinesfortimeintervalmeasurements |