Cargando…
Pedestrian Trajectory Prediction in Extremely Crowded Scenarios
Pedestrian trajectory prediction under crowded circumstances is a challenging problem owing to human interaction and the complexity of the trajectory pattern. Various methods have been proposed for solving this problem, ranging from traditional Bayesian analysis to Social Force model and deep learni...
Autores principales: | Shi, Xiaodan, Shao, Xiaowei, Guo, Zhiling, Wu, Guangming, Zhang, Haoran, Shibasaki, Ryosuke |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6427292/ https://www.ncbi.nlm.nih.gov/pubmed/30862018 http://dx.doi.org/10.3390/s19051223 |
Ejemplares similares
-
Village Building Identification Based on Ensemble Convolutional Neural Networks
por: Guo, Zhiling, et al.
Publicado: (2017) -
Pedestrian Dynamics: Feedback Control of Crowd Evacuation
por: Kachroo, Pushkin P.E, et al.
Publicado: (2008) -
Traffic Instabilities in Self-Organized Pedestrian Crowds
por: Moussaïd, Mehdi, et al.
Publicado: (2012) -
Pedestrian Detection Algorithm for Intelligent Vehicles in Complex Scenarios
por: Cao, Jingwei, et al.
Publicado: (2020) -
Mechanical response of dense pedestrian crowds to the crossing of intruders
por: Nicolas, Alexandre, et al.
Publicado: (2019)