Cargando…

Intersection-Based Link-Adaptive Beaconless Forwarding in Urban Vehicular Ad-Hoc Networks

Remote monitoring applications in urban vehicular ad-hoc networks (VANETs) enable authorities to monitor data related to various activities of a moving vehicle from a static infrastructure. However, urban environment constraints along with various characteristics of remote monitoring applications gi...

Descripción completa

Detalles Bibliográficos
Autores principales: Husain, Khaleel, Awang, Azlan, Kamel, Nidal, Aïssa, Sonia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6427294/
https://www.ncbi.nlm.nih.gov/pubmed/30871001
http://dx.doi.org/10.3390/s19051242
Descripción
Sumario:Remote monitoring applications in urban vehicular ad-hoc networks (VANETs) enable authorities to monitor data related to various activities of a moving vehicle from a static infrastructure. However, urban environment constraints along with various characteristics of remote monitoring applications give rise to significant hurdles while developing routing solutions in urban VANETs. Since the urban environment comprises several road intersections, using their geographic information can greatly assist in achieving efficient and reliable routing. With an aim to leverage this information, this article presents a receiver-based data forwarding protocol, termed Intersection-based Link-adaptive Beaconless Forwarding for City scenarios (ILBFC). ILBFC uses the position information of road intersections to effectively limit the duration for which a relay vehicle can stay as a default forwarder. In addition, a winner relay management scheme is employed to consider the drastic speed decay in vehicles. Furthermore, ILBFC is simulated in realistic urban traffic conditions, and its performance is compared with other existing state-of-the-art routing protocols in terms of packet delivery ratio, average end-to-end delay and packet redundancy coefficient. In particular, the results highlight the superior performance of ILBFC, thereby offering an efficient and reliable routing solution for remote monitoring applications.