Cargando…
A Seabed Real-Time Sensing System for In-Situ Long-Term Multi-Parameter Observation Applications
Aiming at the real-time observation requirements in marine science and ocean engineering, based on underwater acoustic communication and satellite communication technology, a seabed real-time sensing system for in-situ long-term multi-parameter observation applications (SRSS/ILMO) is proposed. It co...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6427298/ https://www.ncbi.nlm.nih.gov/pubmed/30871089 http://dx.doi.org/10.3390/s19051255 |
_version_ | 1783405177431130112 |
---|---|
author | Liu, Lanjun Liao, Zhibo Chen, Caiyi Chen, Jialin Niu, Jiong Jia, Yonggang Guo, Xiujun Chen, Zhaowei Deng, Li Xu, Haibo Liu, Tao |
author_facet | Liu, Lanjun Liao, Zhibo Chen, Caiyi Chen, Jialin Niu, Jiong Jia, Yonggang Guo, Xiujun Chen, Zhaowei Deng, Li Xu, Haibo Liu, Tao |
author_sort | Liu, Lanjun |
collection | PubMed |
description | Aiming at the real-time observation requirements in marine science and ocean engineering, based on underwater acoustic communication and satellite communication technology, a seabed real-time sensing system for in-situ long-term multi-parameter observation applications (SRSS/ILMO) is proposed. It consists of a seabed observation system, a sea surface relay transmission buoy, and a remote monitoring system. The system communication link is implemented by underwater acoustic communication and satellite communication. The seabed observation system adopts the “ARM + FPGA” architecture to meet the low power consumption, scalability, and versatility design requirements. As a long-term unattended system, a two-stage anti-crash mechanism, an automatic system fault isolation design, dual-medium data storage, and improved Modbus protocol are adopted to meet the system reliability requirements. Through the remote monitoring system, users can configure the system working mode, sensor parameters and acquire observation data on demand. The seabed observation system can realize the observation of different fields by carrying different sensors such as those based on marine engineering geology, chemistry, biology, and environment. Carrying resistivity and pore pressure sensors, the SRSS/ILMO powered by seawater batteries was used for a seabed engineering geology observation. The preliminary test results based on harbor environment show the effectiveness of the developed system. |
format | Online Article Text |
id | pubmed-6427298 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-64272982019-04-15 A Seabed Real-Time Sensing System for In-Situ Long-Term Multi-Parameter Observation Applications Liu, Lanjun Liao, Zhibo Chen, Caiyi Chen, Jialin Niu, Jiong Jia, Yonggang Guo, Xiujun Chen, Zhaowei Deng, Li Xu, Haibo Liu, Tao Sensors (Basel) Article Aiming at the real-time observation requirements in marine science and ocean engineering, based on underwater acoustic communication and satellite communication technology, a seabed real-time sensing system for in-situ long-term multi-parameter observation applications (SRSS/ILMO) is proposed. It consists of a seabed observation system, a sea surface relay transmission buoy, and a remote monitoring system. The system communication link is implemented by underwater acoustic communication and satellite communication. The seabed observation system adopts the “ARM + FPGA” architecture to meet the low power consumption, scalability, and versatility design requirements. As a long-term unattended system, a two-stage anti-crash mechanism, an automatic system fault isolation design, dual-medium data storage, and improved Modbus protocol are adopted to meet the system reliability requirements. Through the remote monitoring system, users can configure the system working mode, sensor parameters and acquire observation data on demand. The seabed observation system can realize the observation of different fields by carrying different sensors such as those based on marine engineering geology, chemistry, biology, and environment. Carrying resistivity and pore pressure sensors, the SRSS/ILMO powered by seawater batteries was used for a seabed engineering geology observation. The preliminary test results based on harbor environment show the effectiveness of the developed system. MDPI 2019-03-12 /pmc/articles/PMC6427298/ /pubmed/30871089 http://dx.doi.org/10.3390/s19051255 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Liu, Lanjun Liao, Zhibo Chen, Caiyi Chen, Jialin Niu, Jiong Jia, Yonggang Guo, Xiujun Chen, Zhaowei Deng, Li Xu, Haibo Liu, Tao A Seabed Real-Time Sensing System for In-Situ Long-Term Multi-Parameter Observation Applications |
title | A Seabed Real-Time Sensing System for In-Situ Long-Term Multi-Parameter Observation Applications |
title_full | A Seabed Real-Time Sensing System for In-Situ Long-Term Multi-Parameter Observation Applications |
title_fullStr | A Seabed Real-Time Sensing System for In-Situ Long-Term Multi-Parameter Observation Applications |
title_full_unstemmed | A Seabed Real-Time Sensing System for In-Situ Long-Term Multi-Parameter Observation Applications |
title_short | A Seabed Real-Time Sensing System for In-Situ Long-Term Multi-Parameter Observation Applications |
title_sort | seabed real-time sensing system for in-situ long-term multi-parameter observation applications |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6427298/ https://www.ncbi.nlm.nih.gov/pubmed/30871089 http://dx.doi.org/10.3390/s19051255 |
work_keys_str_mv | AT liulanjun aseabedrealtimesensingsystemforinsitulongtermmultiparameterobservationapplications AT liaozhibo aseabedrealtimesensingsystemforinsitulongtermmultiparameterobservationapplications AT chencaiyi aseabedrealtimesensingsystemforinsitulongtermmultiparameterobservationapplications AT chenjialin aseabedrealtimesensingsystemforinsitulongtermmultiparameterobservationapplications AT niujiong aseabedrealtimesensingsystemforinsitulongtermmultiparameterobservationapplications AT jiayonggang aseabedrealtimesensingsystemforinsitulongtermmultiparameterobservationapplications AT guoxiujun aseabedrealtimesensingsystemforinsitulongtermmultiparameterobservationapplications AT chenzhaowei aseabedrealtimesensingsystemforinsitulongtermmultiparameterobservationapplications AT dengli aseabedrealtimesensingsystemforinsitulongtermmultiparameterobservationapplications AT xuhaibo aseabedrealtimesensingsystemforinsitulongtermmultiparameterobservationapplications AT liutao aseabedrealtimesensingsystemforinsitulongtermmultiparameterobservationapplications AT liulanjun seabedrealtimesensingsystemforinsitulongtermmultiparameterobservationapplications AT liaozhibo seabedrealtimesensingsystemforinsitulongtermmultiparameterobservationapplications AT chencaiyi seabedrealtimesensingsystemforinsitulongtermmultiparameterobservationapplications AT chenjialin seabedrealtimesensingsystemforinsitulongtermmultiparameterobservationapplications AT niujiong seabedrealtimesensingsystemforinsitulongtermmultiparameterobservationapplications AT jiayonggang seabedrealtimesensingsystemforinsitulongtermmultiparameterobservationapplications AT guoxiujun seabedrealtimesensingsystemforinsitulongtermmultiparameterobservationapplications AT chenzhaowei seabedrealtimesensingsystemforinsitulongtermmultiparameterobservationapplications AT dengli seabedrealtimesensingsystemforinsitulongtermmultiparameterobservationapplications AT xuhaibo seabedrealtimesensingsystemforinsitulongtermmultiparameterobservationapplications AT liutao seabedrealtimesensingsystemforinsitulongtermmultiparameterobservationapplications |