Cargando…

A Seabed Real-Time Sensing System for In-Situ Long-Term Multi-Parameter Observation Applications

Aiming at the real-time observation requirements in marine science and ocean engineering, based on underwater acoustic communication and satellite communication technology, a seabed real-time sensing system for in-situ long-term multi-parameter observation applications (SRSS/ILMO) is proposed. It co...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Lanjun, Liao, Zhibo, Chen, Caiyi, Chen, Jialin, Niu, Jiong, Jia, Yonggang, Guo, Xiujun, Chen, Zhaowei, Deng, Li, Xu, Haibo, Liu, Tao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6427298/
https://www.ncbi.nlm.nih.gov/pubmed/30871089
http://dx.doi.org/10.3390/s19051255
_version_ 1783405177431130112
author Liu, Lanjun
Liao, Zhibo
Chen, Caiyi
Chen, Jialin
Niu, Jiong
Jia, Yonggang
Guo, Xiujun
Chen, Zhaowei
Deng, Li
Xu, Haibo
Liu, Tao
author_facet Liu, Lanjun
Liao, Zhibo
Chen, Caiyi
Chen, Jialin
Niu, Jiong
Jia, Yonggang
Guo, Xiujun
Chen, Zhaowei
Deng, Li
Xu, Haibo
Liu, Tao
author_sort Liu, Lanjun
collection PubMed
description Aiming at the real-time observation requirements in marine science and ocean engineering, based on underwater acoustic communication and satellite communication technology, a seabed real-time sensing system for in-situ long-term multi-parameter observation applications (SRSS/ILMO) is proposed. It consists of a seabed observation system, a sea surface relay transmission buoy, and a remote monitoring system. The system communication link is implemented by underwater acoustic communication and satellite communication. The seabed observation system adopts the “ARM + FPGA” architecture to meet the low power consumption, scalability, and versatility design requirements. As a long-term unattended system, a two-stage anti-crash mechanism, an automatic system fault isolation design, dual-medium data storage, and improved Modbus protocol are adopted to meet the system reliability requirements. Through the remote monitoring system, users can configure the system working mode, sensor parameters and acquire observation data on demand. The seabed observation system can realize the observation of different fields by carrying different sensors such as those based on marine engineering geology, chemistry, biology, and environment. Carrying resistivity and pore pressure sensors, the SRSS/ILMO powered by seawater batteries was used for a seabed engineering geology observation. The preliminary test results based on harbor environment show the effectiveness of the developed system.
format Online
Article
Text
id pubmed-6427298
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-64272982019-04-15 A Seabed Real-Time Sensing System for In-Situ Long-Term Multi-Parameter Observation Applications Liu, Lanjun Liao, Zhibo Chen, Caiyi Chen, Jialin Niu, Jiong Jia, Yonggang Guo, Xiujun Chen, Zhaowei Deng, Li Xu, Haibo Liu, Tao Sensors (Basel) Article Aiming at the real-time observation requirements in marine science and ocean engineering, based on underwater acoustic communication and satellite communication technology, a seabed real-time sensing system for in-situ long-term multi-parameter observation applications (SRSS/ILMO) is proposed. It consists of a seabed observation system, a sea surface relay transmission buoy, and a remote monitoring system. The system communication link is implemented by underwater acoustic communication and satellite communication. The seabed observation system adopts the “ARM + FPGA” architecture to meet the low power consumption, scalability, and versatility design requirements. As a long-term unattended system, a two-stage anti-crash mechanism, an automatic system fault isolation design, dual-medium data storage, and improved Modbus protocol are adopted to meet the system reliability requirements. Through the remote monitoring system, users can configure the system working mode, sensor parameters and acquire observation data on demand. The seabed observation system can realize the observation of different fields by carrying different sensors such as those based on marine engineering geology, chemistry, biology, and environment. Carrying resistivity and pore pressure sensors, the SRSS/ILMO powered by seawater batteries was used for a seabed engineering geology observation. The preliminary test results based on harbor environment show the effectiveness of the developed system. MDPI 2019-03-12 /pmc/articles/PMC6427298/ /pubmed/30871089 http://dx.doi.org/10.3390/s19051255 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Liu, Lanjun
Liao, Zhibo
Chen, Caiyi
Chen, Jialin
Niu, Jiong
Jia, Yonggang
Guo, Xiujun
Chen, Zhaowei
Deng, Li
Xu, Haibo
Liu, Tao
A Seabed Real-Time Sensing System for In-Situ Long-Term Multi-Parameter Observation Applications
title A Seabed Real-Time Sensing System for In-Situ Long-Term Multi-Parameter Observation Applications
title_full A Seabed Real-Time Sensing System for In-Situ Long-Term Multi-Parameter Observation Applications
title_fullStr A Seabed Real-Time Sensing System for In-Situ Long-Term Multi-Parameter Observation Applications
title_full_unstemmed A Seabed Real-Time Sensing System for In-Situ Long-Term Multi-Parameter Observation Applications
title_short A Seabed Real-Time Sensing System for In-Situ Long-Term Multi-Parameter Observation Applications
title_sort seabed real-time sensing system for in-situ long-term multi-parameter observation applications
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6427298/
https://www.ncbi.nlm.nih.gov/pubmed/30871089
http://dx.doi.org/10.3390/s19051255
work_keys_str_mv AT liulanjun aseabedrealtimesensingsystemforinsitulongtermmultiparameterobservationapplications
AT liaozhibo aseabedrealtimesensingsystemforinsitulongtermmultiparameterobservationapplications
AT chencaiyi aseabedrealtimesensingsystemforinsitulongtermmultiparameterobservationapplications
AT chenjialin aseabedrealtimesensingsystemforinsitulongtermmultiparameterobservationapplications
AT niujiong aseabedrealtimesensingsystemforinsitulongtermmultiparameterobservationapplications
AT jiayonggang aseabedrealtimesensingsystemforinsitulongtermmultiparameterobservationapplications
AT guoxiujun aseabedrealtimesensingsystemforinsitulongtermmultiparameterobservationapplications
AT chenzhaowei aseabedrealtimesensingsystemforinsitulongtermmultiparameterobservationapplications
AT dengli aseabedrealtimesensingsystemforinsitulongtermmultiparameterobservationapplications
AT xuhaibo aseabedrealtimesensingsystemforinsitulongtermmultiparameterobservationapplications
AT liutao aseabedrealtimesensingsystemforinsitulongtermmultiparameterobservationapplications
AT liulanjun seabedrealtimesensingsystemforinsitulongtermmultiparameterobservationapplications
AT liaozhibo seabedrealtimesensingsystemforinsitulongtermmultiparameterobservationapplications
AT chencaiyi seabedrealtimesensingsystemforinsitulongtermmultiparameterobservationapplications
AT chenjialin seabedrealtimesensingsystemforinsitulongtermmultiparameterobservationapplications
AT niujiong seabedrealtimesensingsystemforinsitulongtermmultiparameterobservationapplications
AT jiayonggang seabedrealtimesensingsystemforinsitulongtermmultiparameterobservationapplications
AT guoxiujun seabedrealtimesensingsystemforinsitulongtermmultiparameterobservationapplications
AT chenzhaowei seabedrealtimesensingsystemforinsitulongtermmultiparameterobservationapplications
AT dengli seabedrealtimesensingsystemforinsitulongtermmultiparameterobservationapplications
AT xuhaibo seabedrealtimesensingsystemforinsitulongtermmultiparameterobservationapplications
AT liutao seabedrealtimesensingsystemforinsitulongtermmultiparameterobservationapplications