Cargando…
Road Topology Refinement via a Multi-Conditional Generative Adversarial Network
With the rapid development of intelligent transportation, there comes huge demands for high-precision road network maps. However, due to the complex road spectral performance, it is very challenging to extract road networks with complete topologies. Based on the topological networks produced by prev...
Autores principales: | Zhang, Yang, Li, Xiang, Zhang, Qianyu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6427313/ https://www.ncbi.nlm.nih.gov/pubmed/30866530 http://dx.doi.org/10.3390/s19051162 |
Ejemplares similares
-
Road Surface Crack Detection Method Based on Conditional Generative Adversarial Networks
por: Kyslytsyna, Anastasiia, et al.
Publicado: (2021) -
Estimation with Uncertainty via Conditional Generative Adversarial Networks
por: Lee, Minhyeok, et al.
Publicado: (2021) -
Application of conditional generative adversarial network to multi-step car-following modeling
por: Ma, Lijing, et al.
Publicado: (2023) -
Depth Map Upsampling via Multi-Modal Generative Adversarial Network
por: Tan, Daniel Stanley, et al.
Publicado: (2019) -
Seismic Data Augmentation Based on Conditional Generative Adversarial Networks
por: Li, Yuanming, et al.
Publicado: (2020)