Cargando…
Study on the Nonlinear Conductivity of SiC/ZnO/Epoxy Resin Micro- and Nanocomposite Materials
To investigate the inhomogeneous distribution of electric fields in insulating equipment and components, five nonlinear-conductance composite materials based on epoxy resin (EP) (nano-SiC/EP, nano-ZnO/EP, micro-ZnO/EP, nano-SiC/ZnO/EP, and nano-micro-SiC/ZnO/EP), were prepared using nano-SiC, nano-Z...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6427385/ https://www.ncbi.nlm.nih.gov/pubmed/30841633 http://dx.doi.org/10.3390/ma12050761 |
Sumario: | To investigate the inhomogeneous distribution of electric fields in insulating equipment and components, five nonlinear-conductance composite materials based on epoxy resin (EP) (nano-SiC/EP, nano-ZnO/EP, micro-ZnO/EP, nano-SiC/ZnO/EP, and nano-micro-SiC/ZnO/EP), were prepared using nano-SiC, nano-ZnO, and micro-ZnO particles as fillers. The mass fractions of the inorganic fillers were 1, 3, and 5 wt%, respectively. The direct current (DC) voltage characteristics of the composites showed that the electrical conductivities and nonlinear coefficients of the composites utilizing single-filler types increased with increasing inorganic filler content. Under the same conditions, the conductivity and nonlinear coefficient of SiC/EP were both larger than those of the nano-ZnO/EP and micro-ZnO/EP. However, the nonlinear coefficient of the composites was significantly affected by the simultaneous addition of the two inorganic fillers, micro-ZnO and nano-SiC. When the content ratio of micro-ZnO to nano-SiC was 2:3, the nonlinear coefficient of the composite reached a maximum value of 3.506, significantly higher than those of the other samples. Compared with the nano-SiC/EP, micro-ZnO/EP and nano-ZnO/EP composites with 5 wt% inorganic filler, the nonlinear coefficient of the two-filler composite was greater by a factor of 0.82, 2.48, and 5.01, respectively. |
---|