Cargando…

Design of a Smartphone Indoor Positioning Dynamic Ground Truth Reference System Using Robust Visual Encoded Targets

Smartphone indoor positioning ground truth is difficult to directly, dynamically, and precisely measure in real-time. To solve this problem, this paper proposes and implements a robust smartphone high-precision indoor positioning dynamic real-time ground truth reference system using color visual sca...

Descripción completa

Detalles Bibliográficos
Autores principales: Liao, Xuan, Chen, Ruizhi, Li, Ming, Guo, Bingxuan, Niu, Xiaoji, Zhang, Weilong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6427402/
https://www.ncbi.nlm.nih.gov/pubmed/30871126
http://dx.doi.org/10.3390/s19051261
Descripción
Sumario:Smartphone indoor positioning ground truth is difficult to directly, dynamically, and precisely measure in real-time. To solve this problem, this paper proposes and implements a robust smartphone high-precision indoor positioning dynamic real-time ground truth reference system using color visual scatter-encoded targets based on machine vision and photogrammetry. First, a kind of novel high-precision color vision scatter-encoded patterns with a robust recognition rate is designed. Then we use a smartphone to obtain a sequence of images of an experimental room and extract the base points of the color visual scatter-encoded patterns from the sequence images to establish the indoor local coordinate system of the encoded targets. Finally, we use a high-efficiency algorithm to decode the targets of a real-time dynamic shooting image to obtain accurate instantaneous pose information of a smartphone camera and establish the high-precision and high-availability smartphone indoor positioning direct ground truth reference system for preliminary real-time accuracy evaluation of other smartphone positioning technologies. The experimental results show that the encoded targets of the color visual scatter-encoded pattern designed in this paper are easy to detect and identify, and the layout is simple and affordable. It can accurately and quickly solve the dynamic instantaneous pose of a smartphone camera to complete the self-positioning of the smartphone according to the artificial scatter feature visual positioning technology. It is a fast, efficient and low-cost accuracy-evaluation method for smartphone indoor positioning.