Cargando…
Robust Normal Estimation for 3D LiDAR Point Clouds in Urban Environments
Normal estimation is a crucial first step for numerous light detection and ranging (LiDAR) data-processing algorithms, from building reconstruction, road extraction, and ground-cover classification to scene rendering. For LiDAR point clouds in urban environments, this paper presents a robust method...
Autores principales: | Zhao, Ruibin, Pang, Mingyong, Liu, Caixia, Zhang, Yanling |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6427512/ https://www.ncbi.nlm.nih.gov/pubmed/30871057 http://dx.doi.org/10.3390/s19051248 |
Ejemplares similares
-
LiDAR Point Cloud Generation for SLAM Algorithm Evaluation
por: Sobczak, Łukasz, et al.
Publicado: (2021) -
Aerial LiDAR Data Augmentation for Direct Point-Cloud Visualisation
por: Bohak, Ciril, et al.
Publicado: (2020) -
PLIN: A Network for Pseudo-LiDAR Point Cloud Interpolation
por: Liu, Haojie, et al.
Publicado: (2020) -
Deep Learning for LiDAR Point Cloud Classification in Remote Sensing
por: Diab, Ahmed, et al.
Publicado: (2022) -
LiDAR Point Cloud Recognition of Overhead Catenary System with Deep Learning
por: Lin, Shuai, et al.
Publicado: (2020)