Cargando…
Ensemble Dictionary Learning for Single Image Deblurring via Low-Rank Regularization
Sparse representation is a powerful statistical technique that has been widely utilized in image restoration applications. In this paper, an improved sparse representation model regularized by a low-rank constraint is proposed for single image deblurring. The key motivation for the proposed model li...
Autores principales: | Li, Jinyang, Liu, Zhijing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6427542/ https://www.ncbi.nlm.nih.gov/pubmed/30845758 http://dx.doi.org/10.3390/s19051143 |
Ejemplares similares
-
Nonlinear Deblurring for Low-Light Saturated Image
por: Cao, Shuning, et al.
Publicado: (2023) -
Frequency Disentanglement Distillation Image Deblurring Network
por: Liu, Yiming, et al.
Publicado: (2021) -
Learning Low-Rank Class-Specific Dictionary and Sparse Intra-Class Variant Dictionary for Face Recognition
por: Tang, Xin, et al.
Publicado: (2015) -
Deblurring traffic sign images based on exemplars
por: Li, Houjie, et al.
Publicado: (2018) -
Low-Rank Regularization for Learning Gene Expression Programs
por: Ye, Guibo, et al.
Publicado: (2013)