Cargando…
A Deep Convolutional Neural Network Inspired by Auditory Perception for Underwater Acoustic Target Recognition
Underwater acoustic target recognition (UATR) using ship-radiated noise faces big challenges due to the complex marine environment. In this paper, inspired by neural mechanisms of auditory perception, a new end-to-end deep neural network named auditory perception inspired Deep Convolutional Neural N...
Autores principales: | Yang, Honghui, Li, Junhao, Shen, Sheng, Xu, Guanghui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6427555/ https://www.ncbi.nlm.nih.gov/pubmed/30836716 http://dx.doi.org/10.3390/s19051104 |
Ejemplares similares
-
Auditory Inspired Convolutional Neural Networks for Ship Type Classification with Raw Hydrophone Data
por: Shen, Sheng, et al.
Publicado: (2018) -
Competitive Deep-Belief Networks for Underwater Acoustic Target Recognition
por: Yang, Honghui, et al.
Publicado: (2018) -
Ship Type Classification by Convolutional Neural Networks with Auditory-Like Mechanisms
por: Shen, Sheng, et al.
Publicado: (2020) -
Compression of a Deep Competitive Network Based on Mutual Information for Underwater Acoustic Targets Recognition
por: Shen, Sheng, et al.
Publicado: (2018) -
Underwater Acoustic Target Recognition Based on Depthwise Separable Convolution Neural Networks
por: Hu, Gang, et al.
Publicado: (2021)