Cargando…
A Multilayer Fusion Light-Head Detector for SAR Ship Detection
Synthetic aperture radar (SAR) ship detection is a heated and challenging problem. Traditional methods are based on hand-crafted feature extraction or limited shallow-learning features representation. Recently, with the excellent ability of feature representation, deep neural networks such as faster...
Autores principales: | Gui, Yunchuan, Li, Xiuhe, Xue, Lei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6427559/ https://www.ncbi.nlm.nih.gov/pubmed/30841632 http://dx.doi.org/10.3390/s19051124 |
Ejemplares similares
-
R-CenterNet+: Anchor-Free Detector for Ship Detection in SAR Images
por: Jiang, Yuhang, et al.
Publicado: (2021) -
A Novel Fusion-Based Ship Detection Method from Pol-SAR Images
por: Wang, Wenguang, et al.
Publicado: (2015) -
A Novel Detector Based on Convolution Neural Networks for Multiscale SAR Ship Detection in Complex Background
por: Dai, Wenxin, et al.
Publicado: (2020) -
A Lightweight YOLOv5-MNE Algorithm for SAR Ship Detection
por: Pang, Lei, et al.
Publicado: (2022) -
Adaptive CFAR Method for SAR Ship Detection Using Intensity and Texture Feature Fusion Attention Contrast Mechanism
por: Li, Nana, et al.
Publicado: (2022)