Cargando…

Evolution of Drought–Flood Abrupt Alternation and Its Impacts on Surface Water Quality from 2020 to 2050 in the Luanhe River Basin

It has become a hot issue to study extreme climate change and its impacts on water quality. In this context, this study explored the evolution characteristics of drought–flood abrupt alternation (DFAA) and its impacts on total nitrogen (TN) and total phosphorous (TP) pollution, from 2020 to 2050, in...

Descripción completa

Detalles Bibliográficos
Autores principales: Bi, Wuxia, Weng, Baisha, Yuan, Zhe, Yang, Yuheng, Xu, Ting, Yan, Dengming, Ma, Jun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6427588/
https://www.ncbi.nlm.nih.gov/pubmed/30813626
http://dx.doi.org/10.3390/ijerph16050691
Descripción
Sumario:It has become a hot issue to study extreme climate change and its impacts on water quality. In this context, this study explored the evolution characteristics of drought–flood abrupt alternation (DFAA) and its impacts on total nitrogen (TN) and total phosphorous (TP) pollution, from 2020 to 2050, in the Luanhe river basin (LRB), based on the predicted meteorological data of the representative concentration pathways (RCPs) climate scenarios and simulated surface water quality data of the Soil and Water Assessment Tool (SWAT) model. The results show that DFAA occurred more frequently in summer, with an increasing trend from northwest to southeast of the LRB, basically concentrated in the downstream plain area, and the irrigation area. Meanwhile, most of the DFAA events were in light level. The incidence of TN pollution was much larger than the incidence of TP pollution and simultaneous occurrence of TN and TP pollution. The TN pollution was more serious than TP pollution in the basin. When DFAA occurred, TN pollution almost occurred simultaneously. Also, when TP pollution occurred, the TN pollution occurred simultaneously. These results could provide some references for the effects and adaptation-strategies study of extreme climate change and its influence on surface water quality.