Cargando…
Time Series Data Fusion Based on Evidence Theory and OWA Operator
Time series data fusion is important in real applications such as target recognition based on sensors’ information. The existing credibility decay model (CDM) is not efficient in the situation when the time interval between data from sensors is too long. To address this issue, a new method based on...
Autores principales: | Liu, Gang, Xiao, Fuyuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6427591/ https://www.ncbi.nlm.nih.gov/pubmed/30866555 http://dx.doi.org/10.3390/s19051171 |
Ejemplares similares
-
Evidence conflict measure based on OWA operator in open world
por: Jiang, Wen, et al.
Publicado: (2017) -
An Undesirable Behaviour of a Recent Extension of OWA Operators to the Setting of Multidimensional Data
por: Pérez-Fernández, Raúl
Publicado: (2020) -
Musculoskeletal disorders: OWAS review
por: GÓMEZ-GALÁN, Marta, et al.
Publicado: (2017) -
Enhancing Edge Attack Strategy via an OWA Operator-Based Ensemble Design in Real-World Networks
por: Feng, Yuan, et al.
Publicado: (2020) -
A Novel Evidence Theory and Fuzzy Preference Approach-Based Multi-Sensor Data Fusion Technique for Fault Diagnosis
por: Xiao, Fuyuan
Publicado: (2017)