Cargando…
Deep Learning for Joint Adaptations of Transmission Rate and Payload Length in Vehicular Networks
Recently, vehicular networks have emerged to facilitate intelligent transportation systems (ITS). They enable vehicles to communicate with each other in order to provide various services such as traffic safety, autonomous driving, and entertainments. The vehicle-to-vehicle (V2V) communication channe...
Autores principales: | Elwekeil, Mohamed, Wang, Taotao, Zhang, Shengli |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6427627/ https://www.ncbi.nlm.nih.gov/pubmed/30841569 http://dx.doi.org/10.3390/s19051113 |
Ejemplares similares
-
An Adaptive Network Coding Scheme for Multipath Transmission in Cellular-Based Vehicular Networks
por: Yin, Chenyang, et al.
Publicado: (2020) -
Deep Reinforcement Learning for Edge Caching with Mobility Prediction in Vehicular Networks
por: Choi, Yoonjeong, et al.
Publicado: (2023) -
Vehicle-Type Detection Based on Compressed Sensing and Deep Learning in Vehicular Networks
por: Li, Yinghua, et al.
Publicado: (2018) -
Deep Transfer Learning Based Intrusion Detection System for Electric Vehicular Networks
por: Mehedi, Sk. Tanzir, et al.
Publicado: (2021) -
Heterogeneous vehicular networks
por: Zheng, Kan, et al.
Publicado: (2016)