Cargando…

Correction Strategy of Mortars with Trajectory Correction Fuze Based on Image Sensor

For a higher accuracy of projectiles, a novel trajectory correction fuze is proposed. In this design, the sensor and actuator were reduced to achieve a balance between performance and affordability. Following introduction of the fuze concept, the flight model was presented and the crossrange and dow...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Rupeng, Li, Dongguang, Fan, Jieru
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6427629/
https://www.ncbi.nlm.nih.gov/pubmed/30857322
http://dx.doi.org/10.3390/s19051211
Descripción
Sumario:For a higher accuracy of projectiles, a novel trajectory correction fuze is proposed. In this design, the sensor and actuator were reduced to achieve a balance between performance and affordability. Following introduction of the fuze concept, the flight model was presented and the crossrange and downrange components of trajectory response under control were investigated. The relationship between the inertial coordinate system and the detector coordinate system was studied so that the imager feedback could be used to derive the actual miss distance. The deployment time of canards and roll angle of the forward fuze were derived and used as the inputs of the control system in this strategy. Example closed-loop simulations were implemented to verify the effectiveness of the strategy. The results illustrate that the accuracy increase is evident and the proposed correction concept is applicable for terminal correction of mortars.