Cargando…

Spatial Evaluation of Soil Moisture (SM), Land Surface Temperature (LST), and LST-Derived SM Indexes Dynamics during SMAPVEX12

Downscaling microwave soil moisture (SM) with optical/thermal remote sensing data has considerable application potential. Spatial correlations between SM and land surface temperature (LST) or LST-derived SM indexes (SMIs) are vital to the current optical/thermal and microwave fusion downscaling meth...

Descripción completa

Detalles Bibliográficos
Autores principales: Sun, Hao, Zhou, Baichi, Liu, Hongxing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6427635/
https://www.ncbi.nlm.nih.gov/pubmed/30871050
http://dx.doi.org/10.3390/s19051247
Descripción
Sumario:Downscaling microwave soil moisture (SM) with optical/thermal remote sensing data has considerable application potential. Spatial correlations between SM and land surface temperature (LST) or LST-derived SM indexes (SMIs) are vital to the current optical/thermal and microwave fusion downscaling methods. In this study, the spatial correlations were evaluated at the same spatial scale using SMAPVEX12 SM data and MODIS day/night LST products. LST-derived SMIs was calculated using NLDAS-2 gridded meteorological data with conventional trapezoid and two-stage trapezoid models. Results indicated that (1) SM agrees better with daytime LST than the nighttime or the day-night differential LST; (2) the daytime LSTs on Aqua and Terra present very similar spatial agreement with SM and they have very similar performances as downscaling factors in simulating SM; (3) decoupling effect among SM, LST, and LST-derived SMIs occurs not only in very wet but also in very dry condition; and (4) the decoupling effect degrades the performance of LST as a downscaling factor. The future downscaling algorithms should consider net surface radiation and soil type to tackle the decoupling effect.