Cargando…
A SIFT-Based DEM Extraction Approach Using GEOEYE-1 Satellite Stereo Pairs
A module for Very High Resolution (VHR) satellite stereo-pair imagery processing and Digital Elevation Model (DEM) extraction is presented. A large file size of VHR satellite imagery is handled using the parallel processing of cascading image tiles. The Scale-Invariant Feature Transform (SIFT) algor...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6427657/ https://www.ncbi.nlm.nih.gov/pubmed/30841629 http://dx.doi.org/10.3390/s19051123 |
_version_ | 1783405260709036032 |
---|---|
author | Daliakopoulos, Ioannis N. Tsanis, Ioannis K. |
author_facet | Daliakopoulos, Ioannis N. Tsanis, Ioannis K. |
author_sort | Daliakopoulos, Ioannis N. |
collection | PubMed |
description | A module for Very High Resolution (VHR) satellite stereo-pair imagery processing and Digital Elevation Model (DEM) extraction is presented. A large file size of VHR satellite imagery is handled using the parallel processing of cascading image tiles. The Scale-Invariant Feature Transform (SIFT) algorithm detects potentially tentative feature matches, and the resulting feature pairs are filtered using a variable distance threshold RANdom SAmple Consensus (RANSAC) algorithm. Finally, point cloud ground coordinates for DEM generation are extracted from the homologous pairs. The criteria of average point spacing irregularity is introduced to assess the effective resolution of the produced DEMs. The module is tested with a 0.5 m × 0.5 m Geoeye-1 stereo pair over the island of Crete, Greece. Sensitivity analysis determines the optimum module parameterization. The resulting 1.5-m DEM has superior detail over reference DEMs, and results in a Root Mean Square Error (RMSE) of about 1 m compared to ground truth measurements. |
format | Online Article Text |
id | pubmed-6427657 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-64276572019-04-15 A SIFT-Based DEM Extraction Approach Using GEOEYE-1 Satellite Stereo Pairs Daliakopoulos, Ioannis N. Tsanis, Ioannis K. Sensors (Basel) Article A module for Very High Resolution (VHR) satellite stereo-pair imagery processing and Digital Elevation Model (DEM) extraction is presented. A large file size of VHR satellite imagery is handled using the parallel processing of cascading image tiles. The Scale-Invariant Feature Transform (SIFT) algorithm detects potentially tentative feature matches, and the resulting feature pairs are filtered using a variable distance threshold RANdom SAmple Consensus (RANSAC) algorithm. Finally, point cloud ground coordinates for DEM generation are extracted from the homologous pairs. The criteria of average point spacing irregularity is introduced to assess the effective resolution of the produced DEMs. The module is tested with a 0.5 m × 0.5 m Geoeye-1 stereo pair over the island of Crete, Greece. Sensitivity analysis determines the optimum module parameterization. The resulting 1.5-m DEM has superior detail over reference DEMs, and results in a Root Mean Square Error (RMSE) of about 1 m compared to ground truth measurements. MDPI 2019-03-05 /pmc/articles/PMC6427657/ /pubmed/30841629 http://dx.doi.org/10.3390/s19051123 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Daliakopoulos, Ioannis N. Tsanis, Ioannis K. A SIFT-Based DEM Extraction Approach Using GEOEYE-1 Satellite Stereo Pairs |
title | A SIFT-Based DEM Extraction Approach Using GEOEYE-1 Satellite Stereo Pairs |
title_full | A SIFT-Based DEM Extraction Approach Using GEOEYE-1 Satellite Stereo Pairs |
title_fullStr | A SIFT-Based DEM Extraction Approach Using GEOEYE-1 Satellite Stereo Pairs |
title_full_unstemmed | A SIFT-Based DEM Extraction Approach Using GEOEYE-1 Satellite Stereo Pairs |
title_short | A SIFT-Based DEM Extraction Approach Using GEOEYE-1 Satellite Stereo Pairs |
title_sort | sift-based dem extraction approach using geoeye-1 satellite stereo pairs |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6427657/ https://www.ncbi.nlm.nih.gov/pubmed/30841629 http://dx.doi.org/10.3390/s19051123 |
work_keys_str_mv | AT daliakopoulosioannisn asiftbaseddemextractionapproachusinggeoeye1satellitestereopairs AT tsanisioannisk asiftbaseddemextractionapproachusinggeoeye1satellitestereopairs AT daliakopoulosioannisn siftbaseddemextractionapproachusinggeoeye1satellitestereopairs AT tsanisioannisk siftbaseddemextractionapproachusinggeoeye1satellitestereopairs |