Cargando…
Study of Catalytic Combustion of Chlorobenzene and Temperature Programmed Reactions over CrCeOx/AlFe Pillared Clay Catalysts
In this study, both AlFe composite pillaring agents and AlFe pillared clays (AlFe-PILC) were synthesized via a facile process developed by our group, after which mixed Cr and Ce precursors were impregnated on AlFe-PILC. Catalytic combustion of organic pollutant chlorobenzene (CB) on CrCe/AlFe-PILC c...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6427678/ https://www.ncbi.nlm.nih.gov/pubmed/30832365 http://dx.doi.org/10.3390/ma12050728 |
_version_ | 1783405265704452096 |
---|---|
author | Qiu, Yingnan Ye, Na Situ, Danna Zuo, Shufeng Wang, Xianqin |
author_facet | Qiu, Yingnan Ye, Na Situ, Danna Zuo, Shufeng Wang, Xianqin |
author_sort | Qiu, Yingnan |
collection | PubMed |
description | In this study, both AlFe composite pillaring agents and AlFe pillared clays (AlFe-PILC) were synthesized via a facile process developed by our group, after which mixed Cr and Ce precursors were impregnated on AlFe-PILC. Catalytic combustion of organic pollutant chlorobenzene (CB) on CrCe/AlFe-PILC catalysts were systematically studied. AlFe-PILC displayed very high thermal stability and large BET surface area (S(BET)). After 4 h of calcination at 550 °C, the basal spacing (d(001)) and S(BET) of AlFe-PILC was still maintained at 1.91 nm and 318 m(2)/g, respectively. Large S(BET) and d(001)-value, along with the strong interaction between the carrier and active components, improved the adsorption/desorption of CB and O(2). When the desorption temperatures of CB and O(2) got closer to the CB combustion temperature, the CB conversion could be increased to a higher level. CB combustion on CrCe/AlFe-PILC catalyst was determined using a Langmuir–Hinshelwood mechanism. Adsorption/desorption/oxidation properties were critical to design highly efficient catalysts for CB degradation. Besides, CrCe/AlFe-PILC also displayed good durability for CB combustion, whether in a humid environment or in the presence of volatile organic compound (VOC), making the catalyst an excellent material for eliminating chlorinated VOCs. |
format | Online Article Text |
id | pubmed-6427678 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-64276782019-04-15 Study of Catalytic Combustion of Chlorobenzene and Temperature Programmed Reactions over CrCeOx/AlFe Pillared Clay Catalysts Qiu, Yingnan Ye, Na Situ, Danna Zuo, Shufeng Wang, Xianqin Materials (Basel) Article In this study, both AlFe composite pillaring agents and AlFe pillared clays (AlFe-PILC) were synthesized via a facile process developed by our group, after which mixed Cr and Ce precursors were impregnated on AlFe-PILC. Catalytic combustion of organic pollutant chlorobenzene (CB) on CrCe/AlFe-PILC catalysts were systematically studied. AlFe-PILC displayed very high thermal stability and large BET surface area (S(BET)). After 4 h of calcination at 550 °C, the basal spacing (d(001)) and S(BET) of AlFe-PILC was still maintained at 1.91 nm and 318 m(2)/g, respectively. Large S(BET) and d(001)-value, along with the strong interaction between the carrier and active components, improved the adsorption/desorption of CB and O(2). When the desorption temperatures of CB and O(2) got closer to the CB combustion temperature, the CB conversion could be increased to a higher level. CB combustion on CrCe/AlFe-PILC catalyst was determined using a Langmuir–Hinshelwood mechanism. Adsorption/desorption/oxidation properties were critical to design highly efficient catalysts for CB degradation. Besides, CrCe/AlFe-PILC also displayed good durability for CB combustion, whether in a humid environment or in the presence of volatile organic compound (VOC), making the catalyst an excellent material for eliminating chlorinated VOCs. MDPI 2019-03-02 /pmc/articles/PMC6427678/ /pubmed/30832365 http://dx.doi.org/10.3390/ma12050728 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Qiu, Yingnan Ye, Na Situ, Danna Zuo, Shufeng Wang, Xianqin Study of Catalytic Combustion of Chlorobenzene and Temperature Programmed Reactions over CrCeOx/AlFe Pillared Clay Catalysts |
title | Study of Catalytic Combustion of Chlorobenzene and Temperature Programmed Reactions over CrCeOx/AlFe Pillared Clay Catalysts |
title_full | Study of Catalytic Combustion of Chlorobenzene and Temperature Programmed Reactions over CrCeOx/AlFe Pillared Clay Catalysts |
title_fullStr | Study of Catalytic Combustion of Chlorobenzene and Temperature Programmed Reactions over CrCeOx/AlFe Pillared Clay Catalysts |
title_full_unstemmed | Study of Catalytic Combustion of Chlorobenzene and Temperature Programmed Reactions over CrCeOx/AlFe Pillared Clay Catalysts |
title_short | Study of Catalytic Combustion of Chlorobenzene and Temperature Programmed Reactions over CrCeOx/AlFe Pillared Clay Catalysts |
title_sort | study of catalytic combustion of chlorobenzene and temperature programmed reactions over crceox/alfe pillared clay catalysts |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6427678/ https://www.ncbi.nlm.nih.gov/pubmed/30832365 http://dx.doi.org/10.3390/ma12050728 |
work_keys_str_mv | AT qiuyingnan studyofcatalyticcombustionofchlorobenzeneandtemperatureprogrammedreactionsovercrceoxalfepillaredclaycatalysts AT yena studyofcatalyticcombustionofchlorobenzeneandtemperatureprogrammedreactionsovercrceoxalfepillaredclaycatalysts AT situdanna studyofcatalyticcombustionofchlorobenzeneandtemperatureprogrammedreactionsovercrceoxalfepillaredclaycatalysts AT zuoshufeng studyofcatalyticcombustionofchlorobenzeneandtemperatureprogrammedreactionsovercrceoxalfepillaredclaycatalysts AT wangxianqin studyofcatalyticcombustionofchlorobenzeneandtemperatureprogrammedreactionsovercrceoxalfepillaredclaycatalysts |