Cargando…
A Fast Beamforming Method to Localize an Acoustic Emission Source under Unknown Wave Speed
The beamforming method is capable of localizing the acoustic emission source in a large-scale structure but its accuracy relies strongly on the assumed propagation speed and it is quite time consuming to apply in online monitoring. This paper proposes a fast beamforming method to localize an acousti...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6427714/ https://www.ncbi.nlm.nih.gov/pubmed/30836605 http://dx.doi.org/10.3390/ma12050735 |
Sumario: | The beamforming method is capable of localizing the acoustic emission source in a large-scale structure but its accuracy relies strongly on the assumed propagation speed and it is quite time consuming to apply in online monitoring. This paper proposes a fast beamforming method to localize an acoustic emission source in a thin-walled structure with unknown wave speed. Firstly, the Bartlett beamforming method (BBM) is introduced into broadband Lamb wave signal processing to develop an L-shape array-based damage source localization method for a thin-walled structure. Secondly, the fast Bartlett beamforming method (FBBM) is proposed based on the characteristics of BBM. Finally, the pencil-lead break test is carried out to validate the proposed method. The test results show that the FBBM can accurately localize the damage source by any given probable wave speed much more rapidly than traditional delay-and-sum beamforming. |
---|