Cargando…

An Energy-Efficient Two-Stage Cooperative Routing Scheme in Wireless Multi-Hop Networks

Cooperative routing is one of the most widely used technologies for improving the energy efficiency and energy balance of wireless multi-hop networks. However, the end-to-end energy cost and network lifetime are greatly restricted if the cooperative transmission model is not designed properly. The m...

Descripción completa

Detalles Bibliográficos
Autores principales: Cheng, Jianming, Gao, Yating, Zhang, Ningbo, Yang, Hongwen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6427732/
https://www.ncbi.nlm.nih.gov/pubmed/30813655
http://dx.doi.org/10.3390/s19051002
Descripción
Sumario:Cooperative routing is one of the most widely used technologies for improving the energy efficiency and energy balance of wireless multi-hop networks. However, the end-to-end energy cost and network lifetime are greatly restricted if the cooperative transmission model is not designed properly. The main aim of this paper is to explore a two-stage cooperative routing scheme to further improve the energy efficiency and prolong the network lifetime. A two-stage cooperative (TSC) transmission model is firstly designed in which the core helper is introduced to determine the helper set for cooperation. Then, the two-stage link cost is formulated where x, the weight of residual energy, is introduced to be adjusted for different design goals. By selecting the optimal helper set, the two-stage link cost of each link can be optimized. Finally, based on the designed TSC transmission model and the optimized two-stage link cost, a distributed two-stage cooperative routing (TSCR) scheme is further proposed to minimize the end-to-end cooperative routing cost. Simulation results evaluate the effect of x on the different performance metrics. When x equals 0, TSCR can achieve the shortest end-to-end transmission delay and highest energy efficiency, while a larger x can achieve a longer network lifetime. Furthermore, simulation results also show that the proposed TSCR scheme can effectively improve both the energy efficiency and network lifetime compared with the existing schemes.