Cargando…
Effects of Food Contamination on Gastrointestinal Morbidity: Comparison of Different Machine-Learning Methods
Morbidity prediction can be useful in improving the effectiveness and efficiency of medical services, but accurate morbidity prediction is often difficult because of the complex relationships between diseases and their influencing factors. This study investigates the effects of food contamination on...
Autores principales: | Song, Qin, Zheng, Yu-Jun, Yang, Jun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6427740/ https://www.ncbi.nlm.nih.gov/pubmed/30866562 http://dx.doi.org/10.3390/ijerph16050838 |
Ejemplares similares
-
Comparing SVM and ANN based Machine Learning Methods for Species Identification of Food Contaminating Beetles
por: Bisgin, Halil, et al.
Publicado: (2018) -
From data to insight: Exploring contaminants in different food groups with literature mining and machine learning techniques
por: Martins, Zita E., et al.
Publicado: (2023) -
Machine learning for morbid glomerular hypertrophy
por: Ushio, Yusuke, et al.
Publicado: (2022) -
Effects of different anesthesia methods on postoperative immune function in patients undergoing gastrointestinal tumor resection
por: Zhang, Yan, et al.
Publicado: (2023) -
Tracking Major Sources of Water Contamination Using Machine Learning
por: Wu, Jianyong, et al.
Publicado: (2021)