Cargando…

Multi-Functional Laccase Immobilized Hydrogel Microparticles for Efficient Removal of Bisphenol A

Hghly stable, reusable, and multi-functional biocatalytic microparticles with Laccase (Lac) enzyme (Lac/particles) were synthesized for bisphenol A (BPA) removal from aqueous solution. The Lac/particles were prepared by encapsulating Lac enzymes into poly ethylene glycol (PEG) hydrogel via the UV as...

Descripción completa

Detalles Bibliográficos
Autores principales: Piao, Mingyue, Zou, Donglei, Yang, Yuesuo, Ren, Xianghao, Qin, Chuanyu, Piao, Yunxian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6427804/
https://www.ncbi.nlm.nih.gov/pubmed/30818844
http://dx.doi.org/10.3390/ma12050704
Descripción
Sumario:Hghly stable, reusable, and multi-functional biocatalytic microparticles with Laccase (Lac) enzyme (Lac/particles) were synthesized for bisphenol A (BPA) removal from aqueous solution. The Lac/particles were prepared by encapsulating Lac enzymes into poly ethylene glycol (PEG) hydrogel via the UV assisted emulsion polymerization method followed by cross linking with glutaraldehyde (GA). The obtained Lac/particles were spherical and micron sized (137–535 μm), presenting high enzyme entrapment efficiency of 100%, high activity recovery of 18.9%, and great stability at various pHs (3–7) than the free Lac. The Lac/particles could adsorb the BPA into the catalytic particles in a short time, promoting contact between BPA and enzyme, and further enzymatically degrade them without the shaking process and independent surrounding buffer solution. The Lac/particles could be reused for another round BPA adsorption and biotranformation by maintaining over 90% of BPA removal efficiency after seven times reuse. The synergistic effects of adsorption and biocatalytical reaction of Lac/particles have significant values in high efficient and cost-effective BPA removal.