Cargando…
Image-Based Learning to Measure the Space Mean Speed on a Stretch of Road without the Need to Tag Images with Labels
Space mean speed cannot be directly measured in the field, although it is a basic parameter that is used to evaluate traffic conditions. An end-to-end convolutional neural network (CNN) was adopted to measure the space mean speed based solely on two consecutive road images. However, tagging images w...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6427809/ https://www.ncbi.nlm.nih.gov/pubmed/30862042 http://dx.doi.org/10.3390/s19051227 |
Sumario: | Space mean speed cannot be directly measured in the field, although it is a basic parameter that is used to evaluate traffic conditions. An end-to-end convolutional neural network (CNN) was adopted to measure the space mean speed based solely on two consecutive road images. However, tagging images with labels (=true space mean speeds) by manually positioning and tracking every vehicle on road images is a formidable task. The present study was focused on naïve animation images provided by a traffic simulator, because these contain perfect information concerning vehicle movement to attain labels. The animation images, however, seem far-removed from actual photos taken in the field. A cycle-consistent adversarial network (CycleGAN) bridged the reality gap by mapping the animation images into seemingly realistic images that could not be distinguished from real photos. A CNN model trained on the synthesized images was tested on real photos that had been manually labeled. The test performance was comparable to those of state-of-the-art motion-capture technologies. The proposed method showed that deep-learning models to measure the space mean speed could be trained without the need for time-consuming manual annotation. |
---|